DOI QR코드

DOI QR Code

Optimization of Preparing Poly(AM-DMDAAC)/MMT Superabsorbent Nanocomposite by Orthogonal Experiment

Orthogonal 방법을 통한 Poly(AM-DMDAAC)/MMT 고흡수성 나노복합체 제조 연구

  • Zhou, Ming (School of Material Science and Engineering, Southwest Petroleum University) ;
  • Yang, Shuangqiao (School of Material Science and Engineering, Southwest Petroleum University) ;
  • Zhou, Yongguo (Sichuan Xinwei Rubber CO., LTD.) ;
  • Qin, Nan (School of Material Science and Engineering, Southwest Petroleum University) ;
  • He, Songtao (Sichuan Xinwei Rubber CO., LTD.) ;
  • Lai, Dong (School of Material Science and Engineering, Southwest Petroleum University) ;
  • Xie, Zhongqiang (School of Material Science and Engineering, Southwest Petroleum University) ;
  • Yuan, Jundong (Sichuan Xinwei Rubber CO., LTD.)
  • Received : 2013.07.11
  • Accepted : 2013.10.02
  • Published : 2014.01.25

Abstract

A novel poly(AM-DMDAAC)/MMT superabsorbent nanocomposites are prepared by radical polymerization using ammonium persulfate (APS) and anhydrous sodium sulfite as a free radical initiator and N,N-methylene bisacrylamide (MBA) as a crosslinker. In this paper, an optimization study on the synthesis of superabsorbent nanocomposites is carried out. Orthogonal array experiment indicates that the optimized conditions is acrylamide (AM) content 23 wt%, diallyl dimethyl ammonium chloride (DMDAAAC) content 6 wt%, montmorillonite (MMT) content 4 wt%, initiator content 0.2 wt% and crosslinker content 0.02 wt%. Under the optimization syntheses conditions concluded, the maximum water absorbency in distilled water is $659.53g{\cdot}g^{-1}$ and in 2 wt% sodium chloride solution is $116.25g{\cdot}g^{-1}$. Compared with the range values of different factors ($R_j$), the order of significance factors in distilled water is C (MMT) > B (DMDAAC) > A (AM) > D (crosslinker) > E (initiator). MMT is intercalated during polymerization reaction and a nanocomposite structure is formed as shown by TEM analysis and XRD analysis.

Keywords

References

  1. K. Kosemund, H. Schlatter, J. L. Ochsenhirt, E. L. Krause, D. S. Marsman, and G. N. Erasala, Regul. Toxicol. Pharm., 53, 81 (2009). https://doi.org/10.1016/j.yrtph.2008.10.005
  2. M. Sadeghi and H. Hosseinzadeh, J. Bioact. Compat. Pol., 23, 381 (2008). https://doi.org/10.1177/0883911508093504
  3. M. Zhou, Y. Yang, and J.-L. Dai, Polym. Mater. Sci. Eng. (Chinese), 24, 36 (2008).
  4. R. Po, J. Macromol. Sci. Rev. Macromol. Chem. Phys., C34, 607 (1994).
  5. J. Zhang, K. Yuan, Y.-P. Wang, S.-J. Gu, and S.-T. Zhang, Mater. Lett., 61, 316 (2007). https://doi.org/10.1016/j.matlet.2006.04.055
  6. T. Wan, X. Q. Wang, Y. Yuan, and W. Q. He, J. Appl. Polym. Sci., 102, 2875 (2006). https://doi.org/10.1002/app.24729
  7. A. Q. Wang and J. P. Zhang, Organic/Inorganic Superabsorbent Composites (Chinese), Science, Beijing, 2006.
  8. M. Zhou, J.-Z. Zhao, and L.-Z. Zhou, J. Appl. Polym. Sci., 121, 2406 (2011). https://doi.org/10.1002/app.33519
  9. L. B. de Paiva, A. R. Morales, and F. R. V. Diaz, Appl. Clay Sci., 42, 8 (2008). https://doi.org/10.1016/j.clay.2008.02.006
  10. K. Y. Chan, C. K. Kwong, and X. G. Luo, Expert. Syst. Appl., 36, 7379 (2009). https://doi.org/10.1016/j.eswa.2008.09.022
  11. H. Evangelaras, E. Kolaiti, and C. Koukouvinos, J. Stat. Plan. Infer., 136, 3698 (2006). https://doi.org/10.1016/j.jspi.2005.02.023
  12. C. Chuanwen, S. Feng, L. Yuguo, and W. Shuyun, J. Mater. Sci.: Mater. Electron., 21, 349 (2009).
  13. W. U. Xuan and Y. C. L. Dennis, J. Appl. Energ., 88, 3615 (2011). https://doi.org/10.1016/j.apenergy.2011.04.041
  14. P. J. Flory, Principles of Polymer Chemistry, Cornell University Press, Ithaca, 1953.
  15. J. W. Chen and Y. M. Zhao, J. Appl. Polym. Sci., 75, 808 (2000). https://doi.org/10.1002/(SICI)1097-4628(20000207)75:6<808::AID-APP10>3.0.CO;2-3
  16. A. Li, A. Q. Wang, and J. M. Chen, J. Appl. Polym. Sci., 92, 1596 (2004). https://doi.org/10.1002/app.20104
  17. M. Zhou, J.-Z. Zhao, and W.-F. Pu, E-Polymers, 84, 1618 (2012).
  18. B. M. Gholam, R. M. Gholam, and G. Shahrzad, J. Polym. Res., 18, 1487 (2011). https://doi.org/10.1007/s10965-010-9554-6
  19. F. S. Xue, Z. Guo, and X. J. Kun, Polym. Bulletin, 60, 69 (2008). https://doi.org/10.1007/s00289-007-0843-0
  20. M. Yadav and K. Y. Rhee, Carbohydr. Polym., 90, 165 (2012). https://doi.org/10.1016/j.carbpol.2012.05.010
  21. S. F. Wang, L. Shen, Y. J. Tong, L. Chen, I. Y. Phang, P. Q. Lim, and T. X. Liu, J. Polym. Degrad. Stab., 90, 123. (2005). https://doi.org/10.1016/j.polymdegradstab.2005.03.001

Cited by

  1. Study of crosslinked copolymer nanospheres with temperature resistance, salinity resistance, and deep profile control vol.134, pp.40, 2017, https://doi.org/10.1002/app.45131
  2. Synthesis, Characterization, and Swelling Behaviors of Poly(acrylic acid-co-acrylamide)/Pozzolan Superabsorbent Polymers vol.27, pp.5, 2019, https://doi.org/10.1007/s10924-019-01415-0
  3. Superabsorbent nanocomposite and its properties vol.56, pp.5, 2014, https://doi.org/10.1080/10601325.2019.1582303
  4. Natural pozzolan super-absorbent polymer: synthesis, characterization, and its application on plant growing under drought condition vol.12, pp.4, 2014, https://doi.org/10.1007/s40095-021-00404-1