• 제목/요약/키워드: Reaction bonding

검색결과 386건 처리시간 0.042초

고분자 경화제를 사용한 라이너와 HTPB 추진제의 접착력 및 접착공정 개선 (Improvement of Bonding Process and Bond Strength of HTPB Propellant/Liner using a Polymeric Curative)

  • 정병훈;서태석;홍명표
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2005년도 제25회 추계학술대회논문집
    • /
    • pp.413-416
    • /
    • 2005
  • 고분자경화제를 사용한 라이너와 HTPB 추진제의 접착력 및 접착공정을 개선연구를 수행하였다. HTPB와 TDI를 반응시켜 제조된 고분자경화제를 라이너에 사용하면, 접착계면에서 경화제의 이동현상이 줄어든다. 따라서 연소관 준비공정에서 내열재 연마 및 물질이동방지제 도포공정의 생략이 가능하며 HTPB 추진제와 라이너의 접착력이 증가되었다. 또한 가속노화 시험결과 접착력의 저하현상이 관찰되지 않았다.

  • PDF

공통의 Glass를 이용한 LTCC 이종소재의 무수축 접한 (Bonding of Different Mate using Common Glass in Zero Shrinkage LTCC)

  • 장의경;신효순;여동훈;김종희
    • 한국전기전자재료학회논문지
    • /
    • 제19권12호
    • /
    • pp.1106-1111
    • /
    • 2006
  • To improve warpage, delamination and the chemical reaction between 2 different co-fired materials, the bonding behavior with common glass was studied. As shown in the previous paper, the phenomenon of the infiltration is different with the composition of the glass. In particular, in the case of low temperature melting glass, infiltration is experimented in this study. GA-1 glass is infiltrated among $BaTiO_3$ particles below $800^{\circ}C$ and is made by glass/ceramic composite. Until the laminate is fired under $850^{\circ}C$, provskite phase is observed. Although in the case of GA-12 glass, the temperature of the glass infiltration is lower than it of GA-l glass, the perovskite phase already disappears at $800^{\circ}C$. As a result, GA-1 and GA-12 glasses are infiltrated among particles at low temperature, however, the chemical reactivity of the glass/ceramic and sintering temperature should be considered.

Specimen Geometry Effects on Oxidation Behavior of Nuclear Graphite

  • Cho, Kwang-Youn;Kim, Kyung-Ja;Lim, Yun-Soo;Chung, Yun-Joong;Chi, Se-Hwan
    • Carbon letters
    • /
    • 제7권3호
    • /
    • pp.196-200
    • /
    • 2006
  • Graphite has hexagonal closed packing structure with two bonding characteristics of van der Waals bonding between the carbon layers at c axis, and covalent bonding in the carbon layer at a and b axis. Graphite has high tolerant to the extreme conditions of high temperature and neutron irradiations rather than any other materials of metals and ceramics. However, carbon elements easily react with oxygen at as low as 400C. Considering the increasing production of today of hydrogen and electricity with a nuclear reactor, study of oxidation characteristics of graphite is very important, and essential for the life evaluation and design of the nuclear reactor. Since the oxidation behaviors of graphite are dependent on the shapes of testing specimen, critical care is required for evaluation of nuclear reactor graphite materials. In this work, oxidation rate and amounts of the isotropic graphite (IG-110, Toyo Carbon), currently being used for the Koran nuclear reactor, are investigated at various temperature. Oxidation process or principle of graphite was figured out by measuring the oxidation rate, and relation between oxidation rate and sample shape are understood. In the oxidation process, shape effect of volume, surface area, and surface to volume ratio are investigated at $600^{\circ}C$, based on the sample of ASTM C 1179-91.

  • PDF

고분자 경화제를 사용한 라이너와 HTPB 추진제의 접착력 및 접착공정 개선 (Improvement of Bonding Process and Bond Strength of HTPB Propellant/Liner using a Polymeric Curative)

  • 정병훈;서태석;홍명표
    • 한국추진공학회지
    • /
    • 제10권2호
    • /
    • pp.110-114
    • /
    • 2006
  • 고분자경화제를 사용한 라이너와 HTPB 추진제의 접착력 및 접착공정의 개선연구를 수행하였다. HTPB와 TDI를 반응시켜 제조된 고분자경화제를 라이너에 사용하면, 접착계면에서 경화제의 이동현상이 줄어든다 따라서 연소관 준비공정에서 내열재 연마 및 물질이동방지제 도포공정의 생략이 가능하며 HTPB 추진제와 라이너의 접착력이 증가되었다. 또한 가속노화 시험결과 접착력의 저하현상이 관찰되지 않았다.

α-Al2O3와 Ni 금속 접합을 위한 Ni 무전해 도금시 산처리의 영향 (The Effect of Acid Treatment Time for Ni Plating on the Joint of α-Al2O3 and Ni Metal)

  • 이은정;안용태;최병현;지미정;황해진
    • 한국수소및신에너지학회논문집
    • /
    • 제27권3호
    • /
    • pp.306-310
    • /
    • 2016
  • In Na-base Battery for ESS, ${\alpha}-Al_2O_3$ and metal bonding was used to prevent direct reaction between electrolyte and electrode. The hard metal was metalized at $1600^{\circ}C$ in a flowing hydrogen gas for high bonding strength. In this study, instead of hard metal metalizing, Ni was plated on ${\alpha}-Al_2O_3$ by electroless Ni plating technique and then bonded with metal. To enhance the bonding strength, surface of ${\alpha}-Al_2O_3$ was treated with $H_3PO_4$. The effects of strength and leakage of joining as a function of acid treatment time on ${\alpha}-Al_2O_3$ are described.

EUV 세정에서 정전기 제어를 위한 전해이온수 거동의 분자궤도 이해 (Understanding Behaviors of Electrolyzed Water in Terms of Its Molecular Orbitals for Controlling Electrostatic Phenomenon in EUV Cleaning)

  • 김형원;정윤원;최인식;최병선;김재영;유근걸
    • 반도체디스플레이기술학회지
    • /
    • 제21권4호
    • /
    • pp.6-13
    • /
    • 2022
  • The electrostatic phenomenon seriously issued in extreme ultraviolet semiconductor cleaning was studied in junction with molecular dynamic aspect. It was understood that two lone pairs of electrons in water molecule were subtly different each other in molecular orbital symmetry, existed as two states of large energy difference, and became basis for water clustering through hydron bonds. It was deduced that when hydrogen bond formed by lone pair of higher energy state was broken, two types of [H2O]+ and [H2O]- ions would be instantaneously generated, or that lone pair of higher energy state experiencing reactions such as friction with Teflon surface could cause electrostatic generation. It was specifically observed that, in case of electrolyzed cathode water, negative electrostatic charges by electrons were overlapped with negative oxidation reduction potentials without mutual reaction. Therefore, it seemed that negative electrostatic development could be minimized in cathode water by mutual repulsion of electrons and [OH]- ions, which would be providing excellences on extreme ultraviolet cleaning and electrostatic control as well.

자전고온반응에 의한 적층복합재료의 제조공정 (Fabrication Process of Laminated Composites by Self-propagating High-temperature Synthesis Reaction)

  • 김희연;정동석;홍순형
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2002년도 춘계학술발표대회 논문집
    • /
    • pp.155-158
    • /
    • 2002
  • Fabrication process of metal/intermetallic laminated composites by using self-propagating high temperature synthesis(SHS) reactions between Ni and Al elemental metal foils have been investigated. Al foils were sandwiched between Ni foils and heated in a vacuum hot press to the melting point of aluminium. SHS reaction kinetics was thermodynamically analyzed through the final volume fraction of the unreacted Al related with the initial thickness ratio of Ni:Al and diffusion bonding stage before SHS reaction. Thermal aging of laminated composites resulted in the formation of functionally gradient series of intermetallic phases. Microstructure showed that the main phases of intermetallics were NiAl and $Ni_3Al$ having higher strength at room and high temperatures. The volume fractions of intermetallic phases were measured as 82.4, 58.6, 38.4% in 1:1, 2:1, 4:1 initial thickness ratio of Ni:Al.

  • PDF

Development of High-Temperature Solders: Contribution of Transmission Electron Microscopy

  • Bae, Jee-Hwan;Shin, Keesam;Lee, Joon-Hwan;Kim, Mi-Yang;Yang, Cheol-Woong
    • Applied Microscopy
    • /
    • 제45권2호
    • /
    • pp.89-94
    • /
    • 2015
  • This article briefly reviews the results of recently reported research on high-temperature Pb-free solder alloys and the research trend for characterization of the interfacial reaction layer. To improve the product reliability of high-temperature Pb-free solder alloys, thorough research is necessary not only to enhance the alloy properties but also to characterize and understand the interfacial reaction occurring during and after the bonding process. Transmission electron microscopy analysis is expected to play an important role in the development of high-temperature solders by providing accurate and reliable data with a high spatial resolution and facilitating understanding of the interfacial reaction at the solder joint.

Epitaxial Growth of Polyurea Film by Molecular Layer Deposition

  • 최성은;강은지;이진석
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2013년도 제45회 하계 정기학술대회 초록집
    • /
    • pp.264.2-264.2
    • /
    • 2013
  • Molecular layer deposition (MLD) is sequential, self-limiting surface reaction to form conformal and ultrathin polymer film. This technique generally uses bifunctional precursors for stepwise sequential surface reaction and entirely organic polymer films. Also, in comparison with solution-based technique, because MLD is vapor-phase deposition based on ALD, it allows epitaxial growth of molecular layer on substrate and is especially good for surface reaction or coating of nanostructure such as nanopore, nanochannel, nanwire array and so on. In this study, polyurea film that consisted of phenylenediisocyanate and phenylenediamine was formed by MLD technique. In situ Fourier Transform Infrared (FTIR) measurement on high surface area SiO2 substrate was used to monitor the growth of polyurethane and polyurea film. Also, to investigate orientation of chemical bonding formed polymer film, plan-polarized grazing angle FTIR spectroscopy was used and it showed epitaxial growth and uniform orientation of chemical bones of polyurea films.

  • PDF

Kinetics and Reaction Mechanism of Aminolyses of Benzyl 2-Pyridyl Carbonate and t-Butyl 2-Pyridyl Carbonate in Acetonitrile

  • Bae, Ae-Ri;Um, Ik-Hwan
    • Bulletin of the Korean Chemical Society
    • /
    • 제33권5호
    • /
    • pp.1547-1550
    • /
    • 2012
  • Second-order rate constants ($k_N$) have been measured spectrophotometrically for the reactions of benzyl 2-pyridyl carbonate $\mathbf{3}$ and $t$-butyl 2-pyridyl carbonate $\mathbf{3}$ with a series of alicyclic secondary amines in MeCN at $25.0{\pm}0.1^{\circ}C$. Substrate $\mathbf{4}$ is much less reactive than $\mathbf{3}$ and the steric hindrance exerted by the bulky $t$-Bu group in $\mathbf{4}$ has been attributed to its decreased reactivity. The Br${\o}$nsted-type plots for the reactions of $\mathbf{3}$ and $\mathbf{4}$ are linear with ${\beta}_{nuc}=0.57$ and 0.45, respectively. Thus, the reactions have been concluded to proceed through a concerted mechanism, although the current reactions were expected to proceed through a stepwise mechanism with a zwitterionic tetrahedral intermediate $T^{\pm}$. It has been proposed that the rate of leaving-group expulsion is accelerated by the intramolecular H-bonding interaction in $T^{\pm}$ and the "push" provided by the RO group through the resonance interaction. Thus, the enhanced nucleofugality forces the reactions to proceed through a concerted mechanism. The reactivity-selectivity principle (RSP) is not applicable to the current reaction systems, since the reaction of the less reactive $\mathbf{4}$ results in a smaller ${\beta}_{nuc}$ than that of the more reactive $\mathbf{3}$. Steric hindrance exerted by the bulky $t$-Bu group in $\mathbf{4}$ has been suggested to be responsible for the failure of the RSP.