• Title/Summary/Keyword: Reaction ball milling

Search Result 102, Processing Time 0.024 seconds

Attrition Milling and Reaction-Sintering of the Oxide-Metal Mixed Powders: I. Milling Behavior as the Powder Characteristics (산화물과 금속 복합 분말의 Attrition Milling 및 반응소결: I. 분말의 특성에 따른 분쇄 거동)

  • 황규홍;박정환;윤태경
    • Journal of the Korean Ceramic Society
    • /
    • v.31 no.3
    • /
    • pp.337-345
    • /
    • 1994
  • The reaction-sintered alumina and zirconia-alumina ceramics having low firing shrinkage were prepared from the Al/Al2O3 or Al/ZrO2(Ca-PSZ) powder mixtures via the attrition milling. And in this milling process the effect of the characteristics of used powders was investigated. Attrition milling was much more effective in reducing the particle size of ceramic/metal mixed powders than ball milling. Powder mixtures of flake-type Al with coarse alumina was much more effectively comminuted by the attrition milling than the mixtures of globular-type Al with coarse alumina powders. And coarse alumina than fine alumina was much more beneficial in cutting and reducing the ductile Al particles. In the contrary to Al/Al2O3 powder mixtures, Al/ZrO2 powder mixtures was not effectively comminutd. But whether using the alumina ball media or attrition milled with Al2O3 powder rather than Al, the milling efficiency was much more increased.

  • PDF

Effects of Ball Milling Condition on Sintering of Cu, Zn, Sn and Se Mixed Powders (Cu, Zn, Sn, Se 혼합 분말의 소결특성에 미치는 볼밀링 영향)

  • Ahn, Jong-Heon;Jung, Woon-Hwa;Jang, Yun-Jung;Lee, Seong-Heon;Kim, Kyoo-Ho
    • Journal of Powder Materials
    • /
    • v.18 no.3
    • /
    • pp.256-261
    • /
    • 2011
  • In order to make a $Cu_2ZnSnSe_4$ (CZTSe) sputtering target sintered for solar cell application, synthesis of CZTSe compound by solid state reaction of Cu, Zn, Sn and Se mixed powders and effects of ball milling condition on sinterability such as ball size, combination of ball size, ball milling time and sintering temperature, was investigated. As a result of this research, sintering at $500^{\circ}C$ after ball milling using mixed balls of 1 mm and 3 mm for 72 hours was the optimum condition to synthesis near stoichiometric composition of $Cu_2ZnSnSe_4$ and to prepare sintered pellet with high density relatively.

Synthesis of Titanium Silicides by Mechanical Alloying (기계적합금화에 의한 Ti Silicide 화합물의 합성)

  • 변창섭;이상호;김동관;이진형
    • Journal of Powder Materials
    • /
    • v.5 no.4
    • /
    • pp.250-257
    • /
    • 1998
  • The synthesis of titanium silicides ($Ti_3Si$, $TiSi_2$, $Ti_5Si_4$, $Ti_5Si_3$ and TiSi) by mechanical alloying has been investigated. Rapid, self-propagating high-temperature synthesis (SHS) reactions were observed to produce the last three phases during room-temperature high-energy ball milling of elemental powders. Such reactions appeared to be ignited by mechanical impact in an intimate, fine powder mixture formed after a critical milling period. During the high-energy ball milling, the repeated impact at contact points leads to a local concentration of energy which may ignite a self-propagating reaction. From in-situ thermal analysis, each critical milling period for the formation of $Ti_5Si_4$, $Ti_5Si_3$ and TiSi was observed to be 22, 35.5 and 53.5 min, respectively. $Ti_3Si$ and $TiSi_2$, however, have not been produced even till the milling period of 360 min due to lack of the homogeneity of the powder mixtures. The formation of titanium silicides by mechanical alloying and the relevant reaction rates appeared to depend upon the critical milling period, the homogeneity of the powder mixtures, and the heat of formation of the products involved.

  • PDF

Spark Plasma Sintering of Stainless Steel Powders Fabricated by High Energy Ball Milling

  • Chang, Si Young;Oh, Sung-Tag;Suk, Myung-Jin;Hong, Chan Seok
    • Journal of Powder Materials
    • /
    • v.21 no.2
    • /
    • pp.97-101
    • /
    • 2014
  • The 304 stainless steel powders were prepared by high energy ball milling and subsequently sintered by spark plasma sintering, and the microstructural characteristics and micro-hardness were investigated. The initial size of the irregular shaped 304 stainless steel powders was approximately 42 ${\mu}m$. After high energy ball milling at 800 rpm for 5h, the powders became spherical with a size of approximately 2 ${\mu}m$, and without formation of reaction compounds. From TEM analysis, it was confirmed that the as-milled powders consisted of the aggregates of the nano-sized particles. As the sintering temperature increased from 1073K to 1573K, the relative density and micro-hardness of sintered sample increased. The sample sintered at 1573K showed the highest relative density of approximately 95% and a micro-hardness of 550 Hv.

Electrochemical Properties of SnCo for Anode Material of Li Ion Batteries (리튬 이온 전지 음극 재료용 SnCo의 전기화학적 특성)

  • Kim, Ki-Tae;Kim, Yong-Mook;Lee, Yong-Ju;Lee, Ki-Young;Lee, Jai-Young
    • Journal of Hydrogen and New Energy
    • /
    • v.13 no.3
    • /
    • pp.242-248
    • /
    • 2002
  • SnCo alloy powder prepared by high energy ball milling is examined as an anode material for lithium-ion batteries. As the ball-milling time increased, the crystallinity of SnCo decreased. XRD and TEM SADP showed that nanocrystalline and amorphous phase coexisted after 16 h ball-milling. As the crystallinity decreased, the cycleability increased. At first cycle, there are 4 plateau potentials. The observation of voltage plateau at about 0.68 V confirms the formation of Sn-Li alloy and Co metal. It is considered that The plateau potentials below 0.68 V were reaction between Li and Sn. The change of chemical diffusion coefficient showed that the structure of SnCo alloy abruptly changed at first cycle, and maintained after 2nd cycle.

Consolidation and magnetic properties of ferromagnetic Fe-MgO powders prepared by ball milling process (볼밀링법으로 제조된 강자성 Fe-MgO 분말의 벌크화 및 자기적 특성)

  • Chung-Hyo Lee
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.34 no.4
    • /
    • pp.125-130
    • /
    • 2024
  • Preparation of ferromagnetic powders for the mixture of hematite and pure Mg powders by ball milling has been investigated. Also, consolidation of the ball-milled powders was performed in a spark plasma sintering machine at 800-1,000℃. It is found that a ferromagnetic Fe-MgO composite powders are obtained by ball milling of hematite and pure Mg powders before 1 hour. The magnetization and coercivity of ball-milled samples change at the results of the solid state reaction of hematite by pure Mg during ball milling. The saturation magnetization of ball-milled samples increases with increasing ball milling time and reaches to a maximum value of 93.4 emu/g after 5 hours of ball milling. Shrinkage change after sintering of ball-milled sample for 5 hours was significant above 300℃ and gradually increased with increasing temperature up to 800℃. X-ray diffraction result shows that the average grain size of Fe in Fe-MgO bulk sample sintered at 900℃ is 50 nm. It can be also seen that the coercivity of bulk sample sintered at 900℃ is still high value of 90 Oe, indicating that the grain growth of magnetic Fe phase during sintering process tend to be suppressed.

Fabrication of $TiH_2$ Powders from Titanium Tuning Chip by Mechanical Milling

  • Jang, Jin-Man;Lee, Won-Sik;Ko, Se-Hyun
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.969-970
    • /
    • 2006
  • In present work, manufacturing technologies of titanium hydride powder were studied for recycling of titanium tuning chip and for this, attrition ball milling was carried out under $H_2$ pressure of 0.5 MPa. Ti chips were completely transformed into $TiH_2$ within several hundred seconds. Dehydrogenation process $TiH_2$ powders is consist of two reactions: one is reaction of $TiH_2$ to $TiH_x$ and the other decomposition of $TiH_x$ to Ti and $H_2$. The former reaction shows relatively low activation energy and it is suggested that the reaction is caused by introduction of defects due to milling.

  • PDF

Characteristics on EL Properties and Phase Transformation Caused by Artificial Defects on the ZnS:Cu Blue Phosphor for ACPEL (ACPEL용 ZnS:Cu 청색 형광체의 인위적 결함 형성에 따른 결정 상 변화 및 EL 특성)

  • 이명진;전애경;이지영;윤기현
    • Journal of the Korean Ceramic Society
    • /
    • v.41 no.5
    • /
    • pp.406-409
    • /
    • 2004
  • A blue phosphor(ZnS:Cu) is manufactured by solid state reaction for ACPEL(AC powder EL). The effect of artificial defect on phosphor surface on the ZnO phase conversion and resulting luminescence have been studied. It was found that ZnS:Cu could converse to cubic phase more easily due to the formation of artificial defect on 1st fired phosphor by ball-milling process, resulting in improvement of luminescence of phosphor phosphors under the driven EL condition. We found out an optimized ball-mill condition through considering effect of each ball-mill conditions such as milling time and milling rpm on defect. Also we determined relationship between emission luminescence and phase of phosphor based on analyses of crystal structures of phosphors. A significant improvement above 30% was observed in electroluminescence by the artificial defect on ZnS:Cu phosphors compared to non-treated phosphors.

Characteristics of Indium Dissolution of Waste LCD Panel Powders Fabricated by High Energy Ball Milling (HEBM) Process with Milling Time (고에너지 밀링으로 제조된 폐디스플레이 패널 분말의 밀링시간에 따른 인듐 용출특성)

  • Kim, Hyo-Seob;Sung, Jun-Je;Lee, Cheol-Hee;Hong, Hyun-Seon;Hong, Soon-Jik
    • Journal of Powder Materials
    • /
    • v.18 no.4
    • /
    • pp.378-384
    • /
    • 2011
  • In this research, the indium dissolution properties of the waste LCD panel powders were investigated as a function of milling time fabricated by high-energy ball milling (HEBM) process. The particle morphology of waste LCD panel powders changed from sharp and irregular shape of initial cullet to spherical shape with an increase in milling time. The particle size quickly decreased to 15 ${\mu}m$ until the first minute, then decreased gradually about 6 ${\mu}m$ with presence of agglomerated particles after 5 minutes, which increased gradually reaching a uniform size of 13 ${\mu}m$ consist of agglomerated particles after 30 minutes. The glass recovery, after dissolution, was over 99% at initial cullet, which decreased to 90.1 and 78.6% with increasing milling time of 1 and 30 minute respectively, due to a loss in remaining powder of the surface ball and jar, as well as the filter paper. The dissolution amount of indium out of the initial cullet was 208 ppm before milling, turning into 223 ppm for the mechanically milled powder after 1 minute, and nearly 146~125 ppm with further increase in milling time because of the reaction surface decrease of powders due to agglomeration. With this process, maximum dissolving indium amount (223 ppm) could be achieved at a particle size of 15 ${\mu}m$ with 1 minute of milling.

Effect of Ball Milling Conditions on the Microstructure and Dehydrogenation Behavior of TiH2 Powder (볼 밀링 조건이 TiH2 분말의 미세조직과 탈수소화 거동에 미치는 영향)

  • Ji Young Kim;Eui Seon Lee;Ji Won Choi;Youngmin Kim;Sung-Tag Oh
    • Journal of Powder Materials
    • /
    • v.31 no.2
    • /
    • pp.132-136
    • /
    • 2024
  • This study investigated the effects of revolution speed and ball size in planetary milling on the microstructure and dehydrogenation behavior of TiH2 powder. The particle size analysis showed that the large particles present in the raw powder were effectively refined as the revolution speed increased, and when milled at 500 rpm, the median particle size was 1.47 ㎛. Milling with a mixture of balls of two or three sizes was more effective in refining the raw powder than milling with balls of a single size. A mixture of 3 mm and 5 mm diameter balls was the optimal condition for particle refinement, and the measured median particle size was 0.71 ㎛. The dependence of particle size on revolution speed and ball size was explained by changes in input energy and the number of contact points of the balls. In the milled powder, the endothermic peak measured using differential thermal analysis was observed at a relatively low temperature. This finding was interpreted as the activation of a dehydrogenation reaction, mainly due to the increase in the specific surface area and the concentration of lattice defects.