• Title/Summary/Keyword: Reaction Oxygen

Search Result 1,838, Processing Time 0.029 seconds

Oxidation of Tricarbonylmolybdacarborane.3.1 A New Entry to the First Examples of Sulfido-Bridged Dinuclear molybda(V)carboranes

  • Hwang, Jeong-Wook;Kim, Jae-Hak;Kim, Jin-Kwon;Uhm, Jae-Kook;Do, Young-Kyu
    • Bulletin of the Korean Chemical Society
    • /
    • v.23 no.9
    • /
    • pp.1257-1262
    • /
    • 2002
  • $[(C_2B_9H_{11})Mo(CO)_3]_2PPN_2$ $(2{\cdot}PPN_2)$, a new precursor for the oxidative decarbonylation reaction, was synthesized in high yield by the one-electron oxidation reaction of $[(C_2B_9H_{11})Mo(CO)_3]PPN_2$. $2{\cdot}PPN_2$ was structurally characterized, showing a dimeric nature with long (3.321 ${\AA}$) Mo-Mo bonding. Reaction of $2{\cdot}PPN_2$ with sulfur gave the completely decarbonylated product $[(C_2B_9H_{11})Mo({\mu}-S)(S)]_2PPN_2$ ($3{\cdot}PPN_2$). The ligand substitution of the terminal sulfur ligands in $3{\cdot}PPN_2$ to oxygen ligands was carried out with the use of PhIO to give $[(C_2B_9H_{11})Mo({\mu}-S)(O)]_2PPN_2$ ($4{\cdot}PPN_2$). The structures of $3{\cdot}PPN_2$ and $4{\cdot}PPN_2$ were also studied.

A Study on the CFRP Treatment by ion Assisted Reaction Method to Improve T-peel Strength of CFRP/Aluminum Composites (CFRP/알루미늄 복합재에서 이온도움반응법을 적용한 CFRP의 표면처리가 T-peel 강도에 미치는 영향에 대한 연구)

  • Lee, Gyeong-Yeop;Yang, Jun-Ho;Yun, Chang-Seon;Choe, Nak-Sam
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.3
    • /
    • pp.570-575
    • /
    • 2002
  • It is well-known that the bond strength between CFRP(Carbon Fiber Reinforced Plastic) and aluminum is significantly affected by the surface treatment of the CFRP and the aluminum. This study investigates the surface treatment of CFRP to improve the T-peel strength of CFRP/aluminum composites. The surface of %CFRP([0^0]_{14})$ was treated by the ion assisted reaction method under oxygen environment. T-peel strength tests were performed based on the procedure of ASTM D1876-95. The T-peel strength of surface-treated CFRP/aluminum composites was compared with that of untreated CFRP/aluminum composites. The results showed that the T-peel strength of surface-treated CFRP/aluminum composites was about 5.5 times higher than that of untreated CFRP/aluminum composites. SEM examination showed that the improvement of T-peel strength was attributed to the uniform spread and fracture of epoxy adhesive.

Synthesis of High purity $TiO_2$ Powder from Elemental Titanium Particles (금속티타늄 분말로부터 고순도 $TiO_2$ 미분말 합성)

  • 조태환;송기세;이용민;송종택
    • Journal of the Korean Ceramic Society
    • /
    • v.30 no.3
    • /
    • pp.222-228
    • /
    • 1993
  • In order to obtian TiO2 fine powder of high purity, the new method which is different from the sulfate process and the chloride one was employed. TiO2 was syntehsized by the reaction between elemental titanium particles and H2O2 solutiosn at 30~7$0^{\circ}C$, and then TiO2 powder was characterized using XRD, SEM, TEM, DTA and FT-IR. It was found that the initial reaction rate was fast at a high temperature due to the high generation of activated oxygen associated with thedecomposition of H2O2. However, the reaction was slowly proceeded at a low temperature due to slow decomposition of H2O2. In this experimental range, the optimum temeprature was ocnsidered to be about 5$0^{\circ}C$. The primary particles of the hydrous titanium dioxide (TiO2 gel) before aging were spherical, and their mean sizes were about 50nm. The similar shapes and sizes were observed with calcinatin at 40$0^{\circ}C$. The FT-IR spectrum of Ti-OH in the TiO2 gel powder appeared at around 3380cm-1, 1630cm-1 and 530cm-1. This gel powder was crystallized into the anatase type TiO2 at 300~40$0^{\circ}C$.

  • PDF

Mechanisms and Prevention for Metabolism and Toxicity of Korean Herbal-Medicine (한약재의 대사 및 독성의 기전과 예방)

  • Park, Yeong-Chul;Kim, Jong-Bong;Lee, Sun-Dong
    • Journal of Society of Preventive Korean Medicine
    • /
    • v.12 no.1
    • /
    • pp.73-87
    • /
    • 2008
  • In recent years, there has been a globally increasing application of herbal medicines and dietary supplements to treat various chronic diseases and to promote health. However, there are increasing clinical reports on the organ toxicities associated with consumption of herbal medicines. In general, most xenobiotics are metabolized by Phase I reaction(the main enzyme : cytochrome P450) and Phase II reaction. However, reactive oxygen species, free radicals and electrophils are produced inevitably during xenobiotics metabolism. These toxic species and metabolites are increased whenever the endogenous substances and enzymes for Phase II reaction not available. In addition, herbal-drug interactions are pharmacokinetic, with most actually or theoretically affecting the metabolism of the affected product by way of the cytochrome P450 enzymes. This review updated the knowledge on metabolic activation of herbal components and its clinical and toxicological implications. Also, the possible way for preventing the side-effects by herbal-medicine use was suggested.

  • PDF

Characteristics of Chemical Reaction and Ignition Delay of $H_2$/Air/HFP Mixtures (수소/공기/HFP 혼합기의 화학반응 및 점화지연 특성)

  • Lee, Eui-Ju;Oh, Chang-Bo
    • Journal of the Korean Society of Safety
    • /
    • v.25 no.1
    • /
    • pp.17-21
    • /
    • 2010
  • The chemistry and ignition delay of hydrogen/air/HFP premixed mixtures was investigated numerically with unsteady perfectly stirred reactor(PSR). The detailed chemistry of 93 species and 817 reaction mechanism was introduced for hydrogen/air/HFP mixtures. The results shows the temporal concentration variations of major or reactants such as hydrogen and oxygen during autoignition were similar to the spatial distribution of premixed flame while water vapor produced at the ignition temperature was decomposed later, which can be clarified with the relate species production rates that the the re-growth (or shoulder) of OH concentration is a result of F radicals attacking $H_20$ forming OH and HF. For the stoichiometric $H_2$/air mixture inhibited by 20% HFP, HFP thermal decomposition reaction prevails over the radical attack such as H at initial stage. Even though relatively large HFP addition contributes to delay the ignition, chemical effect on the ignition delay is not effective because of late thermal decomposition of HFP. The most small ignition delay was observed at a slightly fuel lean condition ($\phi$ = 0.9), and temperature dependency of ignition delay was clearly shown near 900 K.

Shock Tube Study on the Reaction of Methyl Radical with Molecular Oxygen (메틸 라디칼과 산소 분자 반응에 관한 충격관 연구)

  • Shin, Kuan Soo
    • Journal of the Korean Chemical Society
    • /
    • v.39 no.10
    • /
    • pp.769-775
    • /
    • 1995
  • The reaction between $CH_3$ radicals and $O_2$ was investigated in incident shock waves at temperatures between 1390 and 2250 K and densities from 1.5 to 5.3 mol/$m^{+30/3}$ using azomethane as a source of methyl radicals by following the consumption of CH3 radicals with time resolved UV absorption measurements at 213.9 nm. The rate constant expression $k_2=1.35{\times}10^{12}\;exp( - 5900 K/T)\;cm^3 mol^{-1}s^{-1}$ for the reaction of $CH_3 + O_2{\rightarrow}CH_2O + OH$ was derived.

  • PDF

Synthesis of Solid Electrolyte Nasicon by Solid State Reaction

  • Kim, Cheol-Jin;Chung, Jun-Ki;Lim, Sung-Ki;Rhee, Meung-Ho
    • The Korean Journal of Ceramics
    • /
    • v.2 no.1
    • /
    • pp.25-32
    • /
    • 1996
  • Solid electroyte nasion was synthesized by the optimized solid state reaction minimizing the volume fraction of secondary $ZrO_2$ and glassy phases. To compensate for the evaporation of Na and P during heat-treatment, excess Na and P were added to the starting composition $Na_{1+x} Zr_2 Si_x P_{d-x} O_{12}$ (x=2.1). Phases pure nasicon comparable in volume fraction to the one obtaied from sol-gel process were synthesized after the reaction at $1100~1150^{\circ}C$,$ P_{O2}>=0.1-0.15 $$ZrO_2$ increased with the heat-treatment time due to the decomposition of nasicon phase and that of glassy phase increased as partial oxygen pressure decreased. The synthesized nasion showed a good electrical conductivity of $-1{\times}10^{-2}({\omega}{\cdot}cm)^{-1}$ at $350^{\circ}C$.

  • PDF

The Origin of the Residual Carbon in LiFePO4 Synthesized by Wet Milling

  • Park, Sung-Bin;Park, Chang-Kyoo;Hwang, Jin-Tae;Cho, Won-Il;Jang, Ho
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.2
    • /
    • pp.536-540
    • /
    • 2011
  • This study reports the origin of the electrochemical improvement of $LiFePO_4$ when synthesized by wet milling using acetone without conventional carbon coating. The wet milled $LiFePO_4$ delivers 149 $mAhg^{-1}$ at 0.1 C, which is comparable to carbon coated $LiFePO_4$ and approximately 74% higher than that of dry milled $LiFePO_4$, suggesting that the wet milling process can increase the capacity in addition to conventional carbon coating methods. UV spectroscopy, elemental microanalysis, and evolved gas analysis are used to find the root cause of the capacity improvement during the mechanochemical reaction in acetone. The analytical results show that the improvement is attributed to the conductive residual carbon on the surface of the wet milled $LiFePO_4$ particles, which is produced by the reaction of $FeC_2O_4{\cdot}2H_2O$ with acetone during wet milling through oxygen deficiency in the precursor.

Refining of Steels by $Ar-CO_2$ Plasma (Ar-CO$_2$ Plasma에 의한 강(鋼)의 정련(精鍊))

  • Chang, Sek-Young;Kim, Dong-Ui
    • Journal of Korea Foundry Society
    • /
    • v.6 no.4
    • /
    • pp.284-289
    • /
    • 1986
  • Decarburization phenomena have been studied by plasma in stainless steel, plain carbon steel and cast iron. It was also investigated the movement of impurity element P,S in the plasma jet metal pool. The plasma jet was obtained by $Ar\;-\;CO_2$ gas mixture with 5 kVA DC power source. It produced enough temperature to dissociate into activated oxygen atom by reaction of $CO_2{\leftrightarrows}CO+O^+$ and it reacted with ${\underline{C}}$ in metal pool. Decarburization rate was increased about 5 times in comparing with the conventional induction melted metal pool by $CO_2$ gas decarburization. Even under the Ar plasma jet, decarburization was obtained by agitation of metal bath by $Ar^+$ bombardment and dilution phenomena of carbon atom under the very high plasma temperature. But heavy element P and S are not much removed because they are too heavy in mass to be activated by $Ar^+$ion bombardment. Desulphurization was achieved by $Ar\;-\;CO_2$ plasma in plain carbon steel and cast iron by the reaction of $SO_2({\underline{S}}+O^+)$. But dephosphorization could not be obtained by $Ar\;-\;CO_2$ plasma, because gaseous reaction of phosphorous oxide (${\underline{P}}+O^+$) was not existed.

  • PDF

Theoretical Estimation of Stoichiometry for Biodegradation of Hazardous Organic Compounds (유해유기물질에 대한 미생물 분해 반응식의 이론적 예측)

  • 우승한;박종문
    • Journal of Soil and Groundwater Environment
    • /
    • v.8 no.2
    • /
    • pp.70-77
    • /
    • 2003
  • Theoretical estimation of overall stoichiometry for the microbial degradation of hazardous organic compounds is described. Half-reaction method based on microbial energetics was used in the theoretical estimation. In addition to the half-reaction method, other theoretical methods such as intermediate formation, oxygenation reaction, and estimation of the standard free energy of formation by group contribution theory were also applied. As a case study, the application of these methods was demonstrated for the estimation of microbial kinetics in the biodegradation of phenanthrene which was chosen as a model hazardous organic compound along with glucose and hexadecane. The cell yield, oxygen requirement, nitrogen requirement, and mineralization ratio could be estimated from the overall stoichiometry. It is believed that these theoretical estimation methods are useful tools for practical design and assessment of bioremediation of soil and groundwater contaminated with hazardous organic compounds.