• Title/Summary/Keyword: Reaction Oxygen

Search Result 1,824, Processing Time 0.029 seconds

Numerical Study on operating conditions of Autothermal Reformer using natural gas (천연가스를 이용한 자열개질기의 운영조건에 대한 수치해석 연구)

  • Kim, Jinwook;Kim, Sangwoo;Park, Dalyung;Jeon, Sanghee;Lee, Dohyung
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.11a
    • /
    • pp.91.1-91.1
    • /
    • 2010
  • The Reforming system is an effective method to generate hydrogen which uses for fuel cell system. The purpose of this study is to present characteristics of an autothermal reformer at various operating conditions and to investigate ideal conditions for reforming efficiency. Dominant chemical reactions are Full Combustion, Steam Reforming reaction, Water-Gas Shift reaction and Direct Steam Reforming reaction. Operating parameters of the autothermal reformer are inlet temperature, Oxygen to Carbon Ratio, Steam to Carbon Ratio and Gas Hourly Space Velocity. Autothermal reformer is filled with catalysis of a packbed-bed type. Using numerical approach, we have investigated on various reaction conditions.

  • PDF

Study on Instantaneous Structure of Turbulent Pulverized Coal Flame by Simultaneous Measurement (동시계측에 의한 난류 미분탄 화염의 순간구조에 관한 연구)

  • Hwang, Seung-min
    • Journal of Environmental Science International
    • /
    • v.27 no.5
    • /
    • pp.309-317
    • /
    • 2018
  • In this study, a laser sheet technique and PLIF (Planar laser-induced fluorescence) are applied to a laboratory-scale pulverized coal burner of the open type, and the spatial relationship of the pulverized coal particle zone and the combustion reaction zone is examined by simultaneous measurement of Mie scattering and OH-LIF images. It is found that this technique can be used to investigate the spatial relationship of the combustion reaction zone and pulverized-coal particles in turbulent pulverized-coal flames without disturbing the combustion reaction field. In the upstream region, the combustion reaction occurs only in the periphery of the clusters where high-temperature burned gas of the methane pilot flame is entrained and oxygen supply is sufficient. In the downstream region, however, combustion reaction can be seen also within clusters of pulverized-coal particles, since the temperature of pulverized-coal particles rises, and the mixing with emitted volatile matter and ambient air is promoted.

Effect of applying a DC voltage on the interfacial reactions at the zirconia to copper interface (접합계면반응에 미치는 직류전원부하의 영향)

  • Kim, Sung-Jin;Kim, In-Su;Oh, Myung-Hoon;Choi, Hwan
    • Proceedings of the KWS Conference
    • /
    • 1996.05a
    • /
    • pp.6-9
    • /
    • 1996
  • The Joining of copper rod and zirconia tube was carried out in Ar gas atmosphere. There are two type of the joining. The one is the reaction bond consisting of Cu and zirconia was dominated by surface reaction wi th a undetctable very thin layer. It was found that copper elements were diffused to zirconia side, but that most of Z $r^{4+}$ ions were not diffused to copper side. This result means application of a DC voltage to migrate oxygen to the copper/zirconia interface can oxidize metal at the copper /zirconia interface, and the bonding reaction between zirconia and copper oxide may occur. The other is the reaction bonding was dominated by interdiffusion with a very thick interface layer. This result means application of a DC voltage can reduce zirconia at the interface. The bonding reaction is to be an alloying between Zr and Cr.

  • PDF

The Rearrangement Reaction of CH3SNO2 to CH3SONO Studied by a Density Functional Theory Method

  • Choi, Yoon-Jeong;Lee, Yoon-Sup
    • Bulletin of the Korean Chemical Society
    • /
    • v.25 no.11
    • /
    • pp.1657-1660
    • /
    • 2004
  • Several critical geometries associated with the rearrangement of $CH_3SNO_2\;to\;CH_3SONO$ are calculated with the density functional theory (DFT) method and compared with those of the ab initio molecular orbital methods. There are two probable pathways for this rearrangement, one involving the transition state of an oxygen migration and the other through the homolytic decomposition to radicals. The reaction barrier via the transition state is about 60 kcal/mol and the decomposition energy into radicals about 35 kcal/mol, suggesting that the reaction pathway via the homolytic cleavage to radical species is energetically favorable. Since even the homolytic cleavage requires large energies, the rearrangement reaction is unlikely without the aid of catalysts.

Hydrodediazoniation of Arenediazonium Tetrafluoroborate with Triethylamine

  • 박군하;조윤환;장은주
    • Bulletin of the Korean Chemical Society
    • /
    • v.17 no.2
    • /
    • pp.179-182
    • /
    • 1996
  • Hydrodediazoniation product (3a-d) was found to be the major product in the reaction of arenediazonium tetrafluoroborate (1a-d) with triethylamine (2) in methanol under nitrogen at room temperature. A quantitative study on the title reaction was investigated in detail and two remarks were noteworthy. One was the linear increase in the yield of 3a-d by increasing the molar concentration of 2 until equimolar concentration was reached between 1a-d and 2. The other was the suppression of the formation of 3a-d in the presence of oxygen. Based on these results, the title reaction was better understood by 1:1 electron transfer reaction between reactants (1a-d and 2) rather than by radical chain mechanism proposed in the reaction of arenediazonium tetrafluoroborate and triphenylphosphine.

A Comparative Study on Electrochemical Impedance Analysis of Solid Carbon Fuels in Direct Carbon Fuel Cell (직접탄소 연료전지에서 고체 탄소 연료에 따른 전기화학 임피던스 비교 연구)

  • Cho, Jaemin;Eom, Seongyong;Lee, Gwangseob;Ahn, Seongyool;Kim, Duckjool;Choi, Gyungmin
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.25 no.6
    • /
    • pp.620-628
    • /
    • 2014
  • Direct Carbon Fuel Cell(DCFC) is one of new power generation that the chemical energy of solid carbon can be converted into electrical energy directly. At the high temperature, the electrochemical reaction of the carbon takes place and the carbon reacts with oxygen to produce carbon dioxide as followed overall reaction ($C+O_2{\rightarrow}CO_2$). However, in case of using the raw coals as a fuel of DCFC, the volatile matter containing carbon, hydrogen, and oxygen produces at operating temperature. In this study, the electrochemical reaction of Adaro coal was compared with Graphite. This work focused on the electrochemical reaction of two kinds of solid carbon by Electrochemical Impedance Spectroscopy(EIS). The EIS results were estimated by equivalent circuit analysis. The constant phase element(CPE) was applied in Randle circuit to explain an electrode and fuel interface. The correlation between the fuel characteristic and electrochemical results was discussed by elements of equivalent circuit of each fuel.

Treatment of Pharmaceutical Wastewaters by Hydrogen Peroxide and Zerovalent Iron

  • Jeon, Byeong-Cheol;Nam, Se-Yong;Kim, Young-Kwon
    • Environmental Engineering Research
    • /
    • v.19 no.1
    • /
    • pp.9-14
    • /
    • 2014
  • Fenton reaction with zerovalent iron (ZVI) and $Fe^{2+}$ ions was studied to treat pharmaceutical wastewaters (PhWW) including antibiotics and non-biodegradable organics. Incremental biodegradability was assessed by monitoring biochemical oxygen demand (BOD) changes during Fenton reaction. Original undiluted wastewater samples were used as collected from the pharmaceutical factory. Experiments were carried out to obtain optimal conditions for Fenton reaction under different $H_2O_2$ and ion salts (ZVI and $Fe^{2+}$) concentrations. The optimal ratio and dosage of $H_2O_2$/ZVI were 5 and 25/5 g/L (mass basis), respectively. Also, the optimal ratio and dosage of $H_2O_2/Fe^{2+}$ ions were 5 and 35/7 g/L (mass basis), respectively. Under optimized conditions, the chemical oxygen demand (COD) removal efficiency by ZVI was 23% better than the treatment with $Fe^{2+}$ ion. The reaction time was 45 min for ZVI and shorter than 60 min for $Fe^{2+}$ ion. The COD and total organic carbon (TOC) were decreased, but BOD was increased under the optimal conditions of $H_2O_2$/ZVI = 25/5 g/L, because organic compounds were converted into biodegradable intermediates in the early steps of the reaction. The BOD/TOC ratio was increased, but reverse-wise, the COD/TOC was decreased because of generated intermediates. The biodegradability was increased about 9.8 times (BOD/TOC basis), after treatment with ZVI. The combination of chemical and biological processes seems an interesting combination for treating PhWW.

A Gas-Phase Investigation of Oxygen-Hydrogen Exchange Reaction of O(3P) + C2H5 → H(2S) + C2H4O

  • Jang, Su-Chan;Park, Min-Jin;Choi, Jong-Ho
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.3
    • /
    • pp.839-844
    • /
    • 2014
  • The gas-phase radical-radical reaction $O(^3P)$ + $C_2H_5$ (ethyl) ${\rightarrow}$ $H(^2S)$ + $CH_3CHO$(acetaldehyde) was investigated by applying a combination of vacuum-ultraviolet laser-induced fluorescence spectroscopy in a crossed beam configuration and ab initio calculations. The two radical reactants $O(^3P)$ and $C_2H_5$ were respectively produced by photolysis of $NO_2$ and supersonic flash pyrolysis of the synthesized precursor azoethane. Doppler profile analysis of the nascent H-atom products in the Lyman-${\alpha}$ region revealed that the average translational energy of the products and the average fraction of the total available energy released as translational energy were $5.01{\pm}0.72kcalmol^{-1}$ and 6.1%, respectively. The empirical data combined with CBS-QB3 level ab initio theory and statistical calculations demonstrated that the title exchange reaction is a major channel and proceeds via an addition-elimination mechanism through the formation of a short-lived, dynamical addition complex on the doublet potential energy surface. On the basis of systematic comparison with several exchange reactions of hydrocarbon radicals, the observed small kinetic energy release can be explained in terms of the loose transition state with a product-like geometry and a small reverse activation barrier along the reaction coordinate.

Research and Development Trends in Seawater Electrolysis Systems and Catalysts (해수 수전해 시스템 및 촉매 연구 개발 동향)

  • Yoonseong Jung;Tuan Linh Doan;Ta Nam Nguyen;Taekeun Kim
    • Applied Chemistry for Engineering
    • /
    • v.34 no.6
    • /
    • pp.567-575
    • /
    • 2023
  • Water electrolysis is undergoing active research as one of the promising technologies for producing effective green hydrogen. Using seawater directly as a raw material for a water electrolysis system can solve the problem of the limitations of existing freshwater raw materials, as seawater accounts for approximately 97% of the water on Earth. At the same time, abundant by-product materials can be obtained, representative examples of which are Cl2, ClO-, Br2, and Mg(OH)2 produced during electrolysis, depending on their composition and pH environment. In order to develop a successful seawater electrolysis system and oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) catalysts, it is necessary to understand the causes and consequences of reactions that occur in the seawater environment. Therefore, in this paper, we will investigate the reaction mechanism and characteristics of the seawater electrolysis system as well as the research and development trends of electrochemical catalysts used in anode and cathode electrodes.

Oxygen Permeation Properties of $La_{0.6}Sr_{0.4}Co_{0.2}Fe_{0.8}O_{3-{\delta}}$ Mixed-conducting Membrane (혼합전도성 $La_{0.6}Sr_{0.4}Co_{0.2}Fe_{0.8}O_{3-{\delta}}$ 분리막의 산소투과 특성)

  • Lim, Kyoung-Tae;Cho, Tong-Lae;Lee, Kee-Sung;Woo, Sang-Kuk;Park, Kee-Bae;Kim, Jong-Won
    • Journal of the Korean Ceramic Society
    • /
    • v.38 no.9
    • /
    • pp.787-793
    • /
    • 2001
  • $La_{0.6}Sr_{0.4}Co_{0.2}Fe_{0.8}O_{3-{\delta}}$ membranes were fabricated by solid-state reaction. We investigated sintering behavior and oxygen permeation flux as a function of time-on-stream, temperature and upstream oxygen partial pressure. The oxygen was permeated at temperatures form 750$^{\circ}$C to 950$^{\circ}$C by mixed conducting through oxygen vacancy diffusion in the dense membrane. The oxygen permeation flux through the membrane were about 0.1ml/$cm^3{\cdot}$min at 850$^{\circ}$C. A constant time was required for reaching stable oxygen flux, and oxygen partial pressure affected the oxygen permeation fluxes.

  • PDF