Browse > Article
http://dx.doi.org/10.7316/KHNES.2014.25.6.620

A Comparative Study on Electrochemical Impedance Analysis of Solid Carbon Fuels in Direct Carbon Fuel Cell  

Cho, Jaemin (Grad. School of Pusan National Univ.)
Eom, Seongyong (Grad. School of Pusan National Univ.)
Lee, Gwangseob (Grad. School of Pusan National Univ.)
Ahn, Seongyool (CRIEPI)
Kim, Duckjool (School of Mechanical Engineering, Pusan National Univ.)
Choi, Gyungmin (School of Mechanical Engineering, Pusan National Univ.)
Publication Information
Transactions of the Korean hydrogen and new energy society / v.25, no.6, 2014 , pp. 620-628 More about this Journal
Abstract
Direct Carbon Fuel Cell(DCFC) is one of new power generation that the chemical energy of solid carbon can be converted into electrical energy directly. At the high temperature, the electrochemical reaction of the carbon takes place and the carbon reacts with oxygen to produce carbon dioxide as followed overall reaction ($C+O_2{\rightarrow}CO_2$). However, in case of using the raw coals as a fuel of DCFC, the volatile matter containing carbon, hydrogen, and oxygen produces at operating temperature. In this study, the electrochemical reaction of Adaro coal was compared with Graphite. This work focused on the electrochemical reaction of two kinds of solid carbon by Electrochemical Impedance Spectroscopy(EIS). The EIS results were estimated by equivalent circuit analysis. The constant phase element(CPE) was applied in Randle circuit to explain an electrode and fuel interface. The correlation between the fuel characteristic and electrochemical results was discussed by elements of equivalent circuit of each fuel.
Keywords
Direct Carbon Fuel Cell; Electrochemical Reaction; Electrochemical Impedance Spectroscopy; Equivalent Circuit; Constant Phase Element;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 A. Elleuch, A. Boussetta, and K. Halouani, "Analytical modeling of electrochemical mechanisms in CO2 and CO/CO2 producing Direct Carbon Fuel Cell", Journal of Electroanalytical Chemistry, Vol. 668, 2012, p.99.   DOI   ScienceOn
2 J. F. Cooper, J. R. Selmanb, "Electrochemical Oxidation of Carbon for Electric Power Generation: A Review", The Electrochemical Society, Vol. 19, 2009, pp. 15-25.
3 S. C. Lee, C. H Kim, M. G. Hwang, M. S. Kim, K. B. Kim, C. H. Joen, and J. H. Song, "Measurement and Analysis of Coal Conversion Efficiency for a Coal Recirculating Fuel Cell Simulator." Trans. of the Korean Society of Hydrogen Energy, vol. 23, 2012, pp. 503-512.   과학기술학회마을   DOI
4 J. F. Cooper, J. R. Selman, "Analysis of the carbon anode in direct carbon conversion fuel cells", International Journal of Hydrogen Energy, Vol 37, 2012, pp. 19319-19328.   DOI   ScienceOn
5 H. J. Ryu, Y. J. Kim, Y. S. Park, and M. H. Park, "Reaction Characteristics of Coal and Oxygen Carrier Particle in a Thermogravimetric Analyzer." Trans. of the Korean Society of Hydrogen Energy, vol. 22, 2011, pp. 213-222.   과학기술학회마을
6 X. Li, Z. Zhu, R. De Marco, J. Bradley, and A. Dicks, "Evaluation of raw coals as fuels for direct carbon fuel celss", Journal of Power Sources, Vol. 195, 2010, pp. 4051-4058.   DOI   ScienceOn
7 Li C, Shi Y and Cai N. "Performance improvement of direct carbon fuel cell by introducing catalystic gasification process", Journal of Power Sources Vol. 195, 2010, pp. 4460-4466.
8 W. Hao, X. He, Y. Mi, "Achieving performance in intermediate temperature direct carbon fuel cells with renewable carbon as a fuel source", Applied Energy, Vol. 135, 2014, pp. 174-181.   DOI
9 B. D. Cullity, S. R. Stock, Elements of X-Ray Diffraction, Prentice Hall, 3rd, pp. 95-170.
10 J. R. Macdonald, E Barsoukov, "Impedance Spectroscopy theory, experiment, and applications", John Wiley & Sons, Inc., Publication, 2005.
11 S. Y. Ahn, S. Y. Eom, Y. H. Rhie, Y. M. Sung, C. E. Moon, G. M. Choi, and D. J. Kim, "Utilization of wood biomass char in a direct carbon fuel cell(DCFC) system", Applied Energy, Vol. 105, 2013, pp. 207-216.   DOI   ScienceOn
12 S. Y. Ahn, S. Y. Eom, Y.H. Rhie, Y. M. Sung, C. E. Moon, G. M. Choi, and D. J. Kim, "Application of refuse fuels in a direct carbon fuel cell system", Energy, Vol 51, 2013, pp. 447-456.   DOI   ScienceOn
13 W. H. A. Peelen, K, Hemmes, J. H. W. de Wit, "Competive study on the oxygen dissolution behaviour in 62/38 mol% Li/K and 52/48 mol% Li/Na carbonate", Journal of Electroanalytical Chemistry, Vol. 470, 1999, pp. 39-45.   DOI   ScienceOn
14 Y. H. Rhie, S. Y. Eom, S. Y. Ahn, G. M. Choi, and D. J. Kim, "Effect of thermal decomposition products of coal on anodic reactions in direct carbon fuel cells", Journal of Mechanical Science Technology, Vol. 28, 2014, pp. 3807-3812.   DOI
15 X. Li, Z. Zhu, R. D. Marco, A. Dicks, J. Bradley, S. Liu, and G. Q. Lu, "Factors That Determine the Performance of Carbon Fuels in the Direct Carbon Fuel Cell", Industrial & Engineering Chemistry Research, Vol. 47, 2008, pp 9670-9677.   DOI   ScienceOn
16 S. Y. Eom, S. Y. Ahn, Y. H. Rhie, K. J. Kang, Y. M. Sung, C. E. Moon, G. M. Choi, and D. J. Kim, "Influence of devolatilized gases composition from raw coal fuel in the lab scale DCFC (direct carbon fuel cell) system", Energy, Vol. 74, 2014, pp.734-740.   DOI
17 L. Deleebeeckz, and K. Kammer Hansen "HDCFC Performance as a Function of Anode Atmosphere (N2-CO2)." Journal of The Electrochemical Society 161.1, 2014, pp F33-F46.
18 Y. Lin, Z. Zhan, J. Liu, and S. A. Barnett "Direct operation of solid oxide fuel cells with methane fuel." Solid State Ionics Vol. 176, 2005, pp. 1827-1835.   DOI
19 S. Klink, D. Hoche, F. L. Mantia, and W. Schuhmann "FEM modelling of a coaxial three-electrode test cell for electrochemical impedance spectroscopy in lithium ion batteries." Journal of Power Sources 240 (2013): 273-280.   DOI
20 A. C. Rady, S. Giddey, A. Kulkarni, S. P. Badwal, and S. Bhattacharya, "Degradation Mechanism in a Direct Carbon Fuel Cell Operated with Demineralised Brown Coal", Electrochimica Acta, 143, 2014, pp. 278-290.   DOI
21 D. Cao, Y Sun, and G. Wang, "Direct carbon fuel cell : Fundamentals and recent developments", Journal of Power Source, Vol.167, 2007, p. 250.   DOI   ScienceOn
22 S. Campanari, M. Gazzani, and M. C. Romano, "Analysis of Direct Carbon Fuel Cell Based Coal Fired Power Cycles With CO2 Capture", J. Eng. Gas Turbines Power Vol. 135, 2012, 011701.   DOI
23 S. Giddey, S. P. S. Badwal, A. Kulkarni, and C. Munnings, ''A comprehensive review o direct carbon fuel cell technology", Progress in Energy and Combustion Science, Vol. 38, 2012, p. 360   DOI   ScienceOn