• Title/Summary/Keyword: Reaction Oxygen

Search Result 1,820, Processing Time 0.027 seconds

Synthesis of 2(5H)-Furanones and 2-Cycloalkenones and Their Fungicidal Activities (2(5H)-Furanone 및 2-Cycloalkenone 유도체의 합성과 살균활성)

  • Heo, Jung-Nyoung;Song, Young-Seob;Park, No-Kyun;Choi, Gyung-Ja;Jang, Kyung-Soo;Kim, Bum-Tae
    • The Korean Journal of Pesticide Science
    • /
    • v.11 no.1
    • /
    • pp.1-7
    • /
    • 2007
  • We have developed an efficient synthesis of 2(5H)-furanones using the microwave-promoted Suzuki-Miyaura coupling reaction and evaluated their fungicidal activities against six fungal pathogens in vivo. In addition, 2-cyclopentenones or 2-cyclohexenones possessing one or two additional methylene groups instead of the oxygen in the 2(5H)-furanone skeleton were also prepared by using the similar method. As the results of in vivo fungicidal screening against 6 plant diseases, a few derivatives displayed specific fungicidal activities against rice blast and tomato late blast. Further studies toward the optimization of the chemical structures are necessary for the development of novel fungicides with high potency.

A Study on the Catalytic Decomposition of Nitric Oxide over Cu-ZSM5 Catalysts (Cu-ZSM5 촉매상에서 일산화질소 분해반응에 대한 연구)

  • Park, Dal-Ryung;Park, Hyung-Sang;Oh, Young-Sam;Cho, Won-Ihl;Paek, Young-Soon;Pang, Hyo-Sun
    • Journal of Energy Engineering
    • /
    • v.6 no.1
    • /
    • pp.26-33
    • /
    • 1997
  • Highly crystalline Cu-ZSM5 was prepared without using organic templates. Several ion exchange treatments between Na$\^$+/ and Cu$\^$2+/ brought about excess loading of copper ions on the ZSM5 zeolite and the resultant zeolite was active for the decomposition of NO. This indicates that the copper ions excessively loaded on the ZSM5 zeolite are effective for the NO decomposition. When oxygen was added to a reactants, the conversion of NO decreased. NO, O$_2$TPD experiments explained that the active sites for NO decomposition and the adsorption sites of O$_2$, were the same. O$_2$, at the surface of ZSM5 zeolite was desorbed incompletely after pretreatment at 500$^{\circ}C$, and CU-ZSM5 pretreated with H$_2$at 500$^{\circ}C$ showed promoted activity at the start of reaction. Thus, it seems clear that O$_2$, adsorbed ai the surface of catalyst inhibits the catalytic activity.

  • PDF

HYPERSPECTRAL IMAGERY AND SPECTROSCOPY FOR MAPPING DISTRIBUTION OF HEAVY METALS ALONG STREAMLINES

  • Choe, Eun-Young;Kim, Kyoung-Woong;Meer, Freek Van Der;Ruitenbeek, Frank Van;Werff, Harald Van Der;Smeth, Boudewijn De
    • Proceedings of the KSRS Conference
    • /
    • 2007.10a
    • /
    • pp.397-400
    • /
    • 2007
  • For mapping the distribution of heavy metals in the mining area, field spectroscopy and hyperspectral remote sensing were used in this study. Although heavy metals are spectrally featureless from the visible to the short wave infrared range, possible variations in spectral signal due to heavy metals bound onto minerals can be explained with the metal binding reaction onto the mineral surface. Variations in the spectral absorption shapes of lattice OH and oxygen on the mineral surface due to the combination of heavy metals were surveyed over the range from 420 to 2400 nm. Spectral parameters such as peak ratio and peak area were derived and statistically linked to metal concentration levels in the streambed samples collected from the dry stream channels. The spatial relationships between spectral parameters and concentrations of heavy metals were yielded as well. Based on the observation at a ground level for the relationship between spectral signal and metal concentration levels, the spectral parameters were classified in a hyperspectral image and the spatial distribution patterns of classified pixels were compared with the product of analysis at the ground level. The degree of similarity between ground dataset and image dataset was statistically validated. These techniques are expected to support assessment of dispersion of heavy metal contamination and decision on optimal sampling point.

  • PDF

Fucoxanthin Protects Cultured Human Keratinocytes against Oxidative Stress by Blocking Free Radicals and Inhibiting Apoptosis

  • Zheng, Jian;Piao, Mei Jing;Keum, Young Sam;Kim, Hye Sun;Hyun, Jin Won
    • Biomolecules & Therapeutics
    • /
    • v.21 no.4
    • /
    • pp.270-276
    • /
    • 2013
  • Fucoxanthin is an important carotenoid derived from edible brown seaweeds and is used in indigenous herbal medicines. The aim of the present study was to examine the cytoprotective effects of fucoxanthin against hydrogen peroxide-induced cell damage. Fucoxanthin decreased the level of intracellular reactive oxygen species, as assessed by fluorescence spectrometry performed after staining cultured human HaCaT keratinocytes with 2',7'-dichlorodihydrofluorescein diacetate. In addition, electron spin resonance spectrometry showed that fucoxanthin scavenged hydroxyl radical generated by the Fenton reaction in a cell-free system. Fucoxanthin also inhibited comet tail formation and phospho-histone H2A.X expression, suggesting that it prevents hydrogen peroxide-induced cellular DNA damage. Furthermore, the compound reduced the number of apoptotic bodies stained with Hoechst 33342, indicating that it protected keratinocytes against hydrogen peroxide-induced apoptotic cell death. Finally, fucoxanthin prevented the loss of mitochondrial membrane potential. These protective actions were accompanied by the down-regulation of apoptosis-promoting mediators (i.e., B-cell lymphoma-2-associated ${\times}$ protein, caspase-9, and caspase-3) and the up-regulation of an apoptosis inhibitor (B-cell lymphoma-2). Taken together, the results of this study suggest that fucoxanthin defends keratinocytes against oxidative damage by scavenging ROS and inhibiting apoptosis.

Pt/$Ce_{(1-x)}Zr_{(x)}O_2$ catalyst optimization for water gas shift reaction (WGS 반응용 Pt/$Ce_{(1-x)}Zr_{(x)}O_2$ 촉매 최적화)

  • Jeong, Dae-Woon;Kim, Ki-Sun;Eum, Ic-Hwan;Lee, Sung-Hun;Koo, Kee-Young;Yoon, Wang-Lai;Roh, Hyun-Seog
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.213-216
    • /
    • 2009
  • WGS(Water Gas Shift)반응은 일산화탄소(CO)를 이산화탄소($CO_2$)로 전환하는 반응으로 일체형 수소생산시스템의 실현을 위한 고순도 수소생산에 있어서 중요한 단계이다. WGS 반응은 열역학적 평형을 고려하여 고온전이반응(HTS: High Temperature Shift)과 저온전이반응(LTS: Low Temperature Shift) 두 단계 반응으로 진행된다. 두 단계 공정의 통합을 위해 낮은 온도에서 높은 활성을 갖는 WGS 반응용 촉매 개발이 필요하다. 최근 낮은 온도에서 높은 활성을 갖는 귀금속 촉매에 다양한 담체를 적용시킨 연구가 활발히 진행되고 있다. 선행 연구 결과, Ce-$ZrO_2$ 구조는 Ce/Zr 비에 따라 다양한 특성 변화를 관찰하였다. 따라서 낮은 온도에서 높은 활성을 갖는 WGS 반응용 촉매 제조를 위해 환원성 담체인 $CeZrO_2$에 Pt 을 담지시켜 성능을 평가하였다. 제조된 모든 담체는 공침법(Co-precipitation)으로 제조 하였으며 $500^{\circ}C$에서 6시간 소성하였다. 제조된 담체에 백금(Pt)을 함침법(Incipient Wetness Impregnate)으로 담지시켰다. 특성분석은 BET를 이용하여 표면적을 측정하였다. 촉매 반응 실험조건은 $200^{\circ}C{\sim}400^{\circ}C$ 온도범위에서 기체공간속도(GHSV: Gas Hourly Space Velocity) 45,000 ml/$h{\cdot}g-cat$ 으로 혼합가스($H_2$:60%, $N_2$:20%,$CH_4$:1%,CO:9%,$CO_2$:10%)를 흘려 반응 후 배출되는 가스를 Micro-Gas Chromatography 를 이용하여 측정하였다.

  • PDF

Low temperature preparation of Pt alloy electrocatalysts for DMFC

  • Song, Min-Wu;Lee, Kyeong-Seop;Kim, Young-Soon;Shin, Hyung-Shik
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.171-171
    • /
    • 2009
  • The electrodes are usually made of a porous mixture of carbon-supported platinum and ionomers. $SnO_2$ particles provide as supports that have been used for DMFCs, and it have high catalytic activities toward methanol oxidation. The main advantage of $SnO_2$ supported electrodes is that it has strong chemical interactions with metallic components. The high activity to a synergistic bifunctional mechanism in which Pt provides the adsorption sites for CO, while oxygen adsorbs dissociative on $SnO_2$. The reaction between the adsorbed species occurs at the Pt/$SnO_2$ boundary. The morphological observations were characterized by FESEM and transmission electron microscopy (TEM). $SnO_2$ particles crystallinity was analyzed by the X-ray diffraction (XRD). The surface bonded state of the $SnO_2$ particles and electrode materials were observed by the X-ray photoelectron spectroscopy (XPS). The electric properties of the Pt/$SnO_2$ catalyst for methanol oxidation have been investigated by the cyclic voltametry (CV) in 0.1M $H_2SO_4$ and 0.1M MeOH aqueous solution. The peak current density of methanol oxidation was increased as the $SnO_2$ content in the anode catalysts increased. Pt/$SnO_2$ catalysts improve the removal of CO ads species formed on the platinum surface during methanol electro-oxidation.

  • PDF

Effect of Herbicide Paraquat on Electron Donor and Acceptor (제초제 Paraquat의 전자수용 및 방출에 대한 영향)

  • Kim Mi-Lim;Choi Kyung-Ho
    • Journal of Life Science
    • /
    • v.15 no.2 s.69
    • /
    • pp.311-315
    • /
    • 2005
  • When paraquat was added to the bacterial membrane or mitochondrial suspension, the mixture turned dark blue, but the color was disappeared by aeration. The same phenomenon was seen when electrons were supplied to the paraquat. Blue color appeared from near the cathode, and then spreaded to whole transit system. Coloration was accelerated by addition of alkali, but the color was reduced by addition of acid or oxygen. Paraquat exhibited absorption at ultraviolet region by electron transfer at the concentrations as low as 1.0 mM which did not exert difficulty in showing color reaction. Paraquat caused the increase of the optical density at 340 nm by electron transit, and an aspect of that had a strong resemblance to NADH. The acute toxic action of paraquat seemes to depend on inhibition of energy metabolism cased by paraquat action of electron donor and acceptor.

Negative Pressure Wound Therapy of Chronically Infected Wounds Using 1% Acetic Acid Irrigation

  • Jeong, Hii Sun;Lee, Byeong Ho;Lee, Hye Kyung;Kim, Hyoung Suk;Moon, Min Seon;Suh, In Suck
    • Archives of Plastic Surgery
    • /
    • v.42 no.1
    • /
    • pp.59-67
    • /
    • 2015
  • Background Negative-pressure wound therapy (NPWT) induces angiogenesis and collagen synthesis to promote tissue healing. Although acetic acid soaks normalize alkali wound conditions to raise tissue oxygen saturation and deconstruct the biofilms of chronic wounds, frequent dressing changes are required. Methods Combined use of NPWT and acetic acid irrigation was assessed in the treatment of chronic wounds, instilling acetic acid solution (1%) beneath polyurethane membranes twice daily for three weeks under continuous pressure (125 mm Hg). Clinical photographs, pH levels, cultures, and debrided fragments of wounds were obtained pre- and posttreatment. Tissue immunostaining (CD31, Ki-67, and CD45) and reverse transcription-polymerase chain reaction (vascular endothelial growth factor [VEGF], vascular endothelial growth factor receptor [VEGFR]; procollagen; hypoxia-inducible factor 1 alpha [HIF-1-alpha]; matrix metalloproteinase [MMP]-1,-3,-9; and tissue inhibitor of metalloproteinase [TIMP]) were also performed. Results Wound sizes tended to diminish with the combined therapy, accompanied by drops in wound pH (weakly acidic or neutral) and less evidence of infection. CD31 and Ki-67 immunostaining increased (P<0.05) post-treatment, as did the levels of VEGFR, procollagen, and MMP-1 (P<0.05), whereas the VEGF, HIF-1-alpha, and MMP-9/TIMP levels declined (P<0.05). Conclusions By combining acetic acid irrigation with negative-pressure dressings, both the pH and the size of chronic wounds can be reduced and infections be controlled. This approach may enhance angiogenesis and collagen synthesis in wounds, restoring the extracellular matrix.

Combustion Chracteristics of Biomass and Refuse Derived Fuel (바이오매스와 폐기물 고형연료의 연소특성)

  • Gu, Jae-Hoi;Oh, Sea Cheon
    • Applied Chemistry for Engineering
    • /
    • v.23 no.5
    • /
    • pp.456-461
    • /
    • 2012
  • To verify the utilization of biomass as energy, the combustion characteristic has been studied by an experimental combustion furnace under an isothermal and non-isothermal combustion. The wood pellet, rice straw and rice husk were used as biomass samples in this work. The characteristics of emission gases, dusts and residues from biomass combustion have been analyzed and compared with those of reuse derived fuel (RDF). From isothermal combustion experiments, it was found that the incomplete combustion of rice straw was greater that that of rice husk, wood pellet and RDF. This is due to the fact that the combustion reaction rate of the rice straw was faster than that of other samples, and the oxygen concentration in rice straw combustion was rapidly decreasing. It was also found that $NO_{X}$ concentration of emission gas from wood pellet combustion was the lowest. From non-isothermal combustion experiments, it was found that all samples were burned before $900^{\circ}C$. Also, the temperature range of $NO_{X}$ emission was similar to that of CO emission, on the other hand, $SO_{2}$ was emitted at a higher temperature than that of CO emission.

Catalytic Activity of Au/$TiO_2$ and Pt/$TiO_2$ Nanocatalysts Synthesized by Arc Plasma Deposition

  • Jung, Chan-Ho;Kim, Sang-Hoon;Reddy, A.S.;Ha, H.;Park, Jeong-Y.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.245-245
    • /
    • 2012
  • Syntheses of oxide supported metal catalysts by wet-chemical routes have been well known for their use in heterogeneous catalysis. However, uniform deposition of metal nanoparticles with controlled size and shape on the support with high reproducibility is still a challenge for catalyst preparation. Among various synthesis methods, arc plasma deposition (APD) of metal nanoparticles or thin films on oxide supports has received great interest recently, due to its high reproducibility and large-scale production, and used for their application in catalysis. In this work, Au and Pt nanoparticles with size of 1-2 nm have been deposited on titania powder by APD. The size of metal nanoparticles was controlled by number of shots of metal deposition and APD conditions. These catalytic materials were characterized by x-ray diffraction (XRD), inductively coupled plasma (ICP-AES), CO-chemisorption and transmission electron microscopy (TEM). Catalytic activity of the materials was measured by CO oxidation using oxygen, as a model reaction, in a micro-flow reactor at atmospheric pressure. We found that Au/$TiO_2$ is reactive, showing 100% conversion at $110^{\circ}C$, while Pt/$TiO_2$ shows 100% conversion at $200^{\circ}C$. High activity of metal nanoparticles suggests that APD can be used for large scale synthesis of active nanocatalysts. We will discuss the effect of the structure and metal-oxide interactions of the catalysts on catalytic activity.

  • PDF