• Title/Summary/Keyword: Reaction Oxygen

Search Result 1,820, Processing Time 0.036 seconds

Fabrication and characterization of ZrxCe1-xO2 catalytic powder by a hydrothermal process (수열합성공정에 의한 ZrxCe1-xO2 촉매 분말의 제조 및 특성)

  • Choi, Yeon-Bin;Son, Jeong-hun;Sohn, Jeong Ho;Bae, Dong-Sik
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.27 no.6
    • /
    • pp.309-312
    • /
    • 2017
  • The ceria powder is excellent in oxygen storage capacity (OSC) through the oxidation and reduction reaction of Ce ions and is used as a typical material for a three-way catalyst of an automobile which purifies the exhaust gas. However, since ceria generally has poor thermal stability at high temperatures, it is doped with metal ions to improve thermal stability. Therefore, in this study, Zr ions were doped into ceria powder, and their characteristics were further improved due to the increase of specific surface area with decreasing particle size due to doping. In this study, the synthesis of zirconium doped ceria nanopowder was synthesized by hydrothermal process. In order to synthesis Zr ion doped ceria nanopowder, the precursor reaction at was $200^{\circ}C$ for 6 hours. The average particle size of synthesized Zr doped $CeO_2$ nanopowder was below 20 nm. The specific surface area of synthesized Zr ion doped ceria nanopowder increased from $52.03m^2/g$ to $132.27m^2/g$ with Zr increased 30 %.

Effect of Aeration Mechanism on Livestock Manure Liquid Fertilization (폭기형태가 돈분뇨 액비 부숙특성에 미치는 영향)

  • Jeong, Kwang-Hwa;Khan, Modabber Ahmed;Kim, Chang-Hyun;Lee, Dong-Hyun;Choi, Dong-Yoon;Yu, Yong-Hee
    • Korean Journal of Organic Agriculture
    • /
    • v.20 no.4
    • /
    • pp.703-713
    • /
    • 2012
  • Three types of aeration system were installed in experimental liquid fertilization tanks to investigate the change of characteristics of pig slurry used as a raw material for making livestock liquid fertilizer. The aeration systems of the reaction tanks were composed of three major part: the air suppling part (blower), the air pipe part, and the air diffuser part. In the first tank (reactor A), the air was supplied from the bottom of the reaction tank through air pipe system connecting air diffuser with commercial ordinary blower. In the second tank (reactor B), the air diffuser was located 10cm above the bottom of the reactor. In the third tank (reactor C), the pure air was supplied with circulating pjg slurry. The oxygen content of pure air was about 90%. The pure air was mixed with pig slurry by mechanically in the air suppling part (blower) and the air pipe part. The agitation effect was highest in the reactor C than other reactors. The contents of SS, COD, T-N and T-P of each samples collected at middle part of all reactors were 8,500, 4,188, 694 and 422mg/L; 9,000, 4,247, 813 and 356mg/L; 8,667, 6,910, 973 and 269mg/L, respectively.

Process Development for Effective Denitrification by Biofilter Using Loess Ball

  • CHOI DU BOK;LEE DONG BYUNG;CHA WOL SUK
    • Journal of Microbiology and Biotechnology
    • /
    • v.15 no.2
    • /
    • pp.412-420
    • /
    • 2005
  • In order to investigate factors affecting the denitrification in the F-STEP PROCESS using a loess ball as support media and Pseudomonas DWC 17-8, calcining temperature, loess ball size, pH, nitrate concentration, working temperature, and inhibitor were studied in batch mode using synthetic sludge. A 5- 10 mm of loess ball (960$^{circ}$ of calcining temperature) was the most suitable for denitrification. When the initial pH was increased from 3.0 to 7.0, the removal efficiency of nitrate was increased. Specifically, at initial pH of 7.0, the maximum removal efficiency of nitrate was 5.0 mg/min. When the initial concentration of nitrate was increased from 100 to 400 mg/l, the removal efficiency of nitrate was proportional to the concentration of nitrate. The maximum removal efficiency of nitrate was 5.72 mg/min at 400 mg/l of initial concentration. When the operating temperature was increased from 10 to 30$^{circ}$, the removal efficiency of nitrate was increased from 0.76 to 6.15 mg/min, and at above 40$^{circ}$ of operating temperature, it was decreased from 4.0 to 2.0 mg/min. Among the various inhibitors, higher than 10$^{-1}$ M of sodium azide abolished this reaction completely. When the KCN concentration was above 10$^{-1}$ M, the reaction was inhibited completely. In the case of 2,4-dinitrophenol and sodium sulphide, it was inhibited at above 10$^{-2}$ M completely. For testing the various flow orders of the F-STEP PROCESS for effective denitrification using practical wastewater, continuous experiments under the optimum conditions were carried out for 60 days. Among the various processes, the PROCESS A gave the highest efficiencies of denitrification, nitrification, and total nitrogen (TN) removal with 86.5, 89.5, and $90\%$, respectively. For scale-up in the PROCESS A, real farm wastewater was used and pilot tests carried out for 90 days. The denitrification efficiency was $97.5\%$, which was increased by $12.7\%$. The efficiencies of TN removal and nitrification were 96.6 and $70.0\%$, respectively. The removal efficiency of chemical oxygen demand (COD) was $63.7\%$, which was increased by $20\%$.

Oxidation and Surface Functional Group Analyses under Ozone Treatment of Carbon Black (오존처리에 의한 카본 블랙의 산화와 표면 작용기 분석)

  • Yang, Se-In;Kim, Ki-Yeo;Rhyoo, Hae-Yoon;Cho, Sang-Je;Yoon, Kwang-Eui
    • Elastomers and Composites
    • /
    • v.40 no.3
    • /
    • pp.188-195
    • /
    • 2005
  • Chemical and physical changes and the contents of functional groups in the carbon black surface after the ozone treatment was investigated using elemental analysis, pH, tint strength, DBP, $N_2SA$, IA, and acid-base reaction. As the treatment time was increased, surface structure, particle size and surface area of carbon black did not change, while surface oxygen contents increased, and pH decreased and then saturated after $1{\sim}2$ hour. The contents of carboxylic, lactone, hydroxyl, and carbonyl groups were analyzed with four bases such as $NaHCO_3,\;Na_2CO_3,\;NaOH$, and $NaOC_2H_5$. Before oxidation, the carbonyl group was dominantly present on the surface, but by increasing the treatment time, the contents of the carboxylic and carbonyl groups increased to a saturated level after $1{\sim}2$ hour. Before and after the oxidation, the lactone and hydroxyl groups were nearly absent. These results showed that the reaction mechanism of carbon black and ozone is similar to that of ethylene and ozone. Weight of oxidized carbon black was increased after treating AIBN, while free radical was slightly decreased by ESR analysis. When carbon black was treated with organic compounds containing mercapto- groups, the results of ESR showed that free radical peak intensity was almost diminished compared to original carbon black.

Kinetic Studies on the Reaction of 4-Substituted-2,6-dinitrochlorobenzenes with Substituted Anilines in MeOH-MeCN Mixtures (MeOH-MeCN 혼합용매계에서 4-치환-2,6-이니트로 염화벤젠과 아닐린 치환체와의 반응에 대한 속도론적 연구)

  • Dae-Ho Kang;In-Sun Koo;Jong Gun Lee;Ikchoon Lee
    • Journal of the Korean Chemical Society
    • /
    • v.29 no.6
    • /
    • pp.565-574
    • /
    • 1985
  • The rates of reaction between 4-substituted-2,6-dinitrochlorobenzenes with para-substituted anilines in methanol-acetonitrile mixtures were measured by conductometry. It was observed that the rate constant increases in the order of X = 4-$NO_2 {\gg}4-CN {\gg}4- CF_3$, where X is a substituent in the substrate. The rate constant also increases in the order of Y = p-O$CH_3{\gg}p- CH_3{\gg}H {\gg}p-Cl{\gg}m- NO_2$, where Y is a substituent in the aniline ring. Kinetic studies in the methanol-acetonitrile solvent system with various nucleophiles showed that the N-C bond forming step is making a great contribution to the overall second order rate constant. The electrophilic catalysis by methanol probably consists of the hydrogen bonding between alcoholic hydrogen and leaving chloride in the transition state. The nucleophilic catalysis by methanol may be ascribed to the formation of hydrogen bonds between alcoholic oxygen and hydrogens of amines in the transition state. All these experimental facts are supporting the operation of $S_N$Ar machanism with the second step being the rate determining. This mechanism can be successfully fitted to the PES model.

  • PDF

Analysis of Unstable Shock-Induced Combustion over Wedges and Conical Bodies (쐐기 및 원추 주위의 불안정한 충격파 유도연소 해석)

  • Jeong-Yeol Choi
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2003.05a
    • /
    • pp.32-33
    • /
    • 2003
  • Mechanism of a periodic oscillation of shock-induced combustion over a two- dimensional wedges and axi-symmetric cones were investigated through a series of numerical simulations at off-attaching condition of oblique detonation waves(ODW). A same computational domain over 40 degree half-angle was considered for two-dimensional and axi-symmetric shock-induced combustion phenomena. For two-dimensional shock-induced combustion, a 2H2+02+17N2 mixture was considered at Mach number was 5.85with initial temperature 292 K and initial pressureof 12 KPa. The Rankine-Hugoniot relation has solution of attached waves at this condition. For axi-symmetric shock-induced combustion, a H2+2O2+2Ar mixture was considered at Mach number was 5.0 with initial temperature 288 K and initial pressure of 200 mmHg. The flow conditions were based on the conditions of similar experiments and numerical studies.[1, 3]Numerical simulation was carried out with a compressible fluid dynamics code with a detailed hydrogen-oxygen combustion mechanism.[4, 5] A series of calculations were carried out by changing the fluid dynamic time scale. The length wedge is varied as a simplest way of changing the fluid dynamic time scale. Result reveals that there is a chemical kinetic limit of the detached overdriven detonation wave, in addition to the theoretical limit predicted by Rankine-Hugoniot theory with equilibrium chemistry. At the off-attaching condition of ODW the shock and reaction waves still attach at a wedge as a periodically oscillating oblique shock-induced combustion, if the Rankine-Hugoniot limit of detachment isbut the chemical kinetic limit is not.Mechanism of the periodic oscillation is considered as interactions between shock and reaction waves coupled with chemical kinetic effects. There were various regimes of the periodicmotion depending on the fluid dynamic time scales. The difference between the two-dimensional and axi-symmetric simulations were distinct because the flow path is parallel and uniform behind the oblique shock waves, but is not behind the conical shock waves. The shock-induced combustion behind the conical shockwaves showed much more violent and irregular characteristics.From the investigation of characteristic chemical time, condition of the periodic instability is identified as follows; at the detaching condition of Rankine-Hugoniot theory, (1) flow residence time is smaller than the chemical characteristic time, behind the detached shock wave with heat addition, (2) flow residence time should be greater than the chemical characteristic time, behind an oblique shock wave without heat addition.

  • PDF

Basic study on proliferation control of cancer cells using combined ultrasound and LED therapeutic module (초음파와 LED를 이용한 일체형암세포 증식억제 모듈의 기초연구)

  • Cho, Kyung-rae;Choe, Se-woon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.22 no.8
    • /
    • pp.1107-1113
    • /
    • 2018
  • Ultrasonography and photodynamic therapy have been proposed as useful tools as a treatment for inducing necrosis of cells using reactive oxygen species. Apoptosis is an internal mechanism necessary for cells regardless of damage. Ultrasound has the effect of inducing the apoptosis of these cells, and the frequency of 1 MHz is the most applicable area for medical use. The laser which is generally used in photodynamic therapy has a heat reaction and the treatment is limited. However, as a small light emitting diode is developed, it shows possibility to minimize the equipment and reduce heat reaction. On the other hand, there are relatively few researches on direct effects of light compared with studies using photosensitizers, and the area is also limited. Therefore, in this paper, we have developed a cancer cell proliferation control module using ultrasonic and light emitting diodes, which have relatively few side effects, and quantitatively analyze the effect of the module to propose an optimal suppression technique.

Study on Formation Mechanism of Iron Oxide Nanoparticles (산화철 나노입자의 형성 메커니즘에 대한 연구)

  • Kim, Dong-Young;Yoon, Seok-Soo;Takahashi, Migaku
    • Journal of the Korean Magnetics Society
    • /
    • v.22 no.5
    • /
    • pp.167-172
    • /
    • 2012
  • In order to analyze the formation mechanism of iron oxide nanoparticles, we measured the heat flow of $Fe(OL)_3$ precursor with temperature, and TEM images and AC susceptibility of aliquots samples sequentially taken from the reaction solution, respectively. The thermal decomposition of two OL-chain from $Fe(OL)_3$ produced the Fe-OL monomer, which were contributed to the formation of iron oxide nanoparticles. In the initial stage of nanoparticles formation, the small iron oxide nanoparticles had ${\gamma}-Fe_2O_3$ structure. However, as the iron oxide nanoparticles were rapidly growth, the iron oxide nanoparticles showed ${\gamma}-Fe_2O_3$-FeO core-shell structure which the FeO layer was formed on the surface of ${\gamma}-Fe_2O_3$ nanoparticles by insufficient oxygen supply from the reaction solution. These nanoparticles were transformed to $Fe_3O_4$ structure by oxidation during long aging time at high temperature. Finally, the $Fe_3O_4$ nanoparticles with high saturation magnetization and stable in the air could be easily synthesized by the thermal decomposition method.

IDENTIFICATION OF PORPHYROMONAS ENDODONTALIS USING POLYMERASE CHAIN REACTION(RCR) (중합효소연쇄반응(Polymerase Chain Reaction)을 이용한 Porphyromonas endodontalis의 동정에 대한 연구)

  • Lee, Sang-Yup;Yoon, Soo-Han
    • Restorative Dentistry and Endodontics
    • /
    • v.23 no.1
    • /
    • pp.328-338
    • /
    • 1998
  • Porphyromonas endodontalis, an anaerobic Gram negative cocobacillus which was known to be associated with the infected root canals and periapical lesions, is very difficult to culture and to detect by the traditional method in that it requires much time to induce the specific black pigmentation, and it is very sensitive to oxygen and the antibiotics added in the culture medium. In this study, the nucleotide sequences of the 'probe h' (0.73kb), one of the specific DNA probes top. endodontalis (ATCC 35406) which had been developed by our department, was determined and then a pair of primers for PCR amplification was fabricated to identify P. endodontalis. The plasmids containing 'probe h' were purified by $Wizard^{TM}$ Midipreps DNA Purification System (Promega Corp.), and the nucleotide sequences of the 'probe h' were determined by the dideoxy chain termination method using TaqTrack Sequencing System (Promega Corp.) and detected by fluorescent labelling method. The sense/antisense PCR primers were designed with computer software (Lasergene, DNASTAR Ind. PCR was done with a programmable GeneAmp PCR System 2400 (Perkin Elmer-Cetus Co.). Each sample containing the whole genomic DNA of P. endodontalis and other black-pigmented Bacteroides was itailly denatured at $94^{\circ}C$ for 5 min and then subjected to 30 cycles, each of them consisting of 60s at $94^{\circ}C$, 60s at $60^{\circ}C$, and 90s. at $72^{\circ}C$. The amplified DNA was resolved electrophoretically in a 1.0 % agarose gel in 1X TAE buffer, stained with EtBr, and photographed on a UV transilluminator. The results were as follows : 1. The nucleotide sequences of 'probe h' (743 base pairs) were obtained by dideoxy chain termination method, and from that results the specific primers to P. endodontalis (ATCC 35406), 'Primer H1/ Primer H2', were designed. 2. It has been found that 'Primer H1/H2' could detect P. endodontalis (ATCC 35406) using PCR. 3. The PCR system with this primers may be a powerful technique to amplify the specific sequences of 'probe h' of P. endodontalis (ATCC 35406) that produce distinct identification of it from other black-pigmented Bacteroides, and this could help us to determine the nature of periapical disease.

  • PDF

Crystallographic Studies of Dehydrated $Ag^{+}\;and\;K^{+}$ Exchanged Zeolite A Reacted with Alkali Metal Vapor

  • Yang Kim;Mi Suk Jeong;Karl Seff
    • Bulletin of the Korean Chemical Society
    • /
    • v.14 no.5
    • /
    • pp.603-610
    • /
    • 1993
  • The crystal structure of dehydrated $Ag_{5.6}K_{6.4}-A$, zeolite A ion-exchanged with $K^+\;and\;Ag^+$ as indicated and dehydrated at 360$^{\circ}$C, has been determined by single-crystal X-ray diffraction techniques. Also determined were the structures of the products of the reactions of this zeolite with 0.1 Torr of Cs vapor at 250$^{\circ}$C for 48 h and 72 h, and with 0.1 Torr of Rb vapor at 250$^{\circ}$C for 24 h. The structures were solved and refined in the cubic space group Pm3m at 21(l)$^{\circ}$C (a= 12.255(l) ${\AA}$ , 12.367(l) ${\AA}$, 12.350(l) ${\AA}$, and 12.263(l) ${\AA}$, respectively). Dehydrated $Ag_{5.6}K_{6.4}$-A was refined to the final error indices $R_1= 0.044\;and\;R_2=0.037$ with 202 reflections for which I>3${\sigma}$(I). The crystal structures of the reaction products were refined to $R_1=0.087\;and\;R_2= 0.089$ with 157 reflections, $R_1=0.080\;and\;R_2= 0.087$ with 161 reflections, and $R_1= 0.071\;and\;R_2=0.061$ with 88 reflections, respectively. In the structure of $Ag_{5.6}K_{6.4}-A,\;K^+$ ions block all 8-oxygen rings, and one reduced Ag atom is found per sodalite cavity. Also, ca. 4.6 $Ag^+ ions\;and\;3.4 K^+ ions$ are found at 6-ring sites in the large cavity. The crystal structures of the reaction products show that all $K^+$ and $Ag^+$ ions have been reduced, and that all K^+$ atoms have left the zeolite. Cs or Rb species are found at three different crystallographic sites: 3.0 $Cs^+\;or\;3.0Rb^+$ ions per unit cell occupy 8-ring centers, ca. 8.0 $Cs^+ ions\;or\;5.7 Rb^+$ ions, are found on threefold axes opposite 6-rings deep in the large cavity, and ca. 2.5 $Cs^+\;or\;2.3 Rb^+ ions are found on threefold axes in the sodalite unit. Also, 1 $Rb^+$ ion lies opposite a 4-ring. Silver atoms, corresponding to 75% or 40% occupancy of hexasilver clusters stabilized by coordination to $Cs^+\;or\;Rb^+$ ions, are found at the centers of the large cavities. In the crystal structures of dehydrated Ag_{5.6}K_{6.4}-A$ reacted with Cs vapor, excess Cs atoms are absorbed and these form (locally) cationic clusters such as $(Cs_4)3^+\;and\;(Cs_6)4^+$.