• Title/Summary/Keyword: Reaction Kinetics

Search Result 1,384, Processing Time 0.026 seconds

Degradation Kinetics of Anthocyanin Pigment Solutions from Purple-fleshed Sweet Potato Cultivars (자색고구마 품종별 안토시아닌 색소의 분해에 대한 속도론적 연구)

  • Park, Jeong-Seob;Bae, Jae-O;Chung, Bong-Woo;Jung, Mun-Yhung;Choi, Dong-Seong
    • The Korean Journal of Food And Nutrition
    • /
    • v.24 no.4
    • /
    • pp.559-566
    • /
    • 2011
  • The effects of pH and temperature on degradation of anthocyanin in purple-fleshed sweet potato cultivars(Mokpo No.62, Borami, Jami, Sinjami and Ayamurasaki) were determined at pH ranges of 1 to 5 and temperature ranges of 20 to $80^{\circ}C$. The anthocyanin contents of five sweet potato varieties were 3.9, 3.8, 4.7, 4.1, 4.2 mg/g of dried sweet potato, respectively. Degradations of anthocyanins at different pHs and temperatures followed the first-order reaction. Our results clearly showed that the anthocyanin stability of purple-fleshed sweet potato was dependent on the source of the sweet potato cultivars. Anthocyanin obtained from Borami showed the highest stability. The half-life of antocyanin degradation of purple sweet potato cultivars(Mokpo No.62, Borami, Jami, Sinjami and Ayamurasaki) at pH 3 were 22.2, 28.3, 26.3, 23.4, 22.7 days at $60^{\circ}C$, respectively. A significant decrease in anthocyanin stability was observed at temperatures above $40^{\circ}C$. Activation energies of purple-fleshed sweet potato cultivars at different temperatures were 54.67, 60.93, 71.73, 59.35, 62.28 kJ/mol, respectively.

Adsorption Characteristics and Parameters of Acid Black and Quinoline Yellow by Activated Carbon (활성탄에 의한 Acid Black과 Quinoline Yellow의 흡착특성 및 파라미터)

  • Yi, Kyung Ho;Hwang, Eun Jin;Baek, Woo Seung;Lee, Jong-Jib;Dong, Jong-In
    • Clean Technology
    • /
    • v.26 no.3
    • /
    • pp.186-195
    • /
    • 2020
  • The isothermal adsorption, dynamic, and thermodynamic parameters of Acid black (AB) and Quinoline yellow (QY) adsorption by activated carbon were investigated using the initial concentration, contact time, temperature, and pH of the dyes as adsorption parameters. The adsorption equilibrium data fits the Freundlich isothermal adsorption model, and the calculated Freundlich separation factor values found that activated carbon can effectively remove AB and QY. Comparing the kinetic data showed that the pseudo second order model was within 10% error in the adsorption process. The intraparticle diffusion equation results were divided into two straight lines. Since the slope of the intraparticle diffusion line was smaller than the slope of the boundary layer diffusion line, it was confirmed that intraparticle diffusion was the rate-controlling step. The thermodynamic experiments indicated that the activation energies of AB and QY were 19.87 kJ mol-1 and 14.17 kJ mol-1, which corresponded with the physical adsorption process (5 ~ 40 kJ mol-1). The adsorption reaction was spontaneous because the free energy change in the adsorption of AB and QY by activated carbon was negative from 298 to 318 K. As the temperature increased, the free energy value decreased resulting in higher spontaneity. Adsorption of AB and QY by activated carbon showed the highest adsorption removal rate at pH 3 due to the effect of anions generated by dissociation. The adsorption mechanism was electrostatic attraction.

Adsorption Characteristics Analysis of 2,4-Dichlorophenol in Aqueous Solution with Activated Carbon Prepared from Waste Citrus Peel using Response Surface Modeling Approach (반응표면분석법을 이용한 폐감귤박 활성탄에 의한 수중의 2,4-Dichlorophenol 흡착특성 해석)

  • Lee, Chang-Han;Kam, Sang-Kyu;Lee, Min-Gyu
    • Korean Chemical Engineering Research
    • /
    • v.55 no.5
    • /
    • pp.723-730
    • /
    • 2017
  • The batch experiments by response surface methodology (RSM) have been applied to investigate the influences of operating parameters such as temperature, initial concentration, contact time and adsorbent dosage on 2,4-dichlorophenol (2,4-DCP) adsorption with an activated carbon prepared from waste citrus peel (WCAC). Regression equation formulated for the 2,4-DCP adsorption was represented as a function of response variables. Adequacy of the model was tested by the correlation between experimental and predicted values of the response. A fairly high value of $R^2$ (0.9921) indicated that most of the data variation was explained by the regression model. The significance of independent variables and their interactions were tested by the analysis of variance (ANOVA) and t-test statistics. These results showed that the model used to fit response variables was significant and adequate to represent the relationship between the response and the independent variables. The kinetics and isotherm experiment data can be well described with the pseudo-second order model and the Langmuir isotherm model, respectively. The maximum adsorption capacity of 2,4-DCP on WCAC calculated from the Langmuir isotherm model was 345.49 mg/g. The rate controlling mechanism study revealed that film diffusion and intraparticle diffusion were simultaneously occurring during the adsorption process. The thermodynamic parameters indicated that the adsorption reaction of 2,4-DCP on WCAC was an endothermic and spontaneous process.

Effects of Rice Straw and Gypsum on the Changes of Urease, Nitrate Reductase and Nitrite Reductase Activities in Saline Paddy Soil (간척답토양(干拓沓土壤)에 볏짚 및 석고시용(石膏施用)이 뇨효소(尿酵素), 초산환원효소(硝酸還元酵素) 및 아초산환원효소(亞硝酸還元酵素)의 활성(活性)에 미치는 영향(影響))

  • Lee, Sang Kyu;Kim, Young Sig;Hwang, Seon Woong;Park, Jun Kyu;Chang, Young Sun
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.18 no.1
    • /
    • pp.105-110
    • /
    • 1985
  • A incubation study was conducted to find out the effects of rice straw and gypsum as soil ameriolite on urease, nitrate and nitrite reductase activities in newly reclaimed saline sandy soil. The results obtained were summarized as follows: 1. Very low urease activities were observed in saline soil if contrast to high productive paddy soil. Urease activities were lower at 5 days than that of 25 and 50 days after incubation. Remarkably high urease activities were obtained by the application of rice straw and gypsum. 2. Comparing with NPK treatment, application of rice straw and gypsum were enhanced the activities of nitrate and nitraite reductase. 3. Positive correlation (r=0.5501 p=0.05) was obtained between urease activities and ammonium nitrogen concentration in soil. 4. Cyclic oxidation and reduction of nitrate and nitrite in soil were obtained in terms of first order microbial kinetics reaction in case of application of rice straw and gypsum, respectively. 5. Positive correlation (r=0.6296 p=0.05) was obtained between the activitie of nitrite reductase and nitrate reductase in soil.

  • PDF

Removal of Cs by Adsorption with IE911 (Crystalline Silicotitanate) from High-Radioactive Seawater Waste (IE911 (crystalline silicotitanate) 의한 고방사성해수폐액으로부터 Cs의 흡착 제거)

  • Lee, Eil-Hee;Lee, Keun-Young;Kim, Kwang-Wook;Kim, Ik-Soo;Chung, Dong-Yong;Moon, Jei-Kwon
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.13 no.3
    • /
    • pp.171-180
    • /
    • 2015
  • This study was performed on the removal of Cs, one of the main high- radioactive nuclides contained in the high-radioactive seawater waste (HSW), by adsorption with IE911 (crystalline silicotitanate type). For the effective removal of Cs and the minimization of secondary solid waste generation, adsorption of Cs by IE911 (hereafter denoted as IE911-Cs) was effective to carry out in the m/V (ratio of absorbent weight to solution volume) ratio of 2.5 g/L, and the adsorption time of 1 hour. In these conditions, Cs and Sr were adsorbed about 99% and less than 5%, respectively. IE911-Cs could be also expressed as a Langmuir isotherm and a pseudo-second order rate equation. The adsorption rate constants (k2) were decreased with increasing initial Cs concentrations and particle sizes, and increased with increasing ratios of m/V, solution temperatures and agitation speeds. The activation energy of IE911-Cs was about 79.9 kJ/mol. It was suggested that IE911-Cs was dominated by a chemical adsorption having a strong bonding form. From the negative values of Gibbs free energy and enthalpy, it was indicated that the reaction of IE911-Cs was a forward, exothermic and relatively active at lower temperatures. Additionally, the negative entropy values were seen that the adsorbed Cs was evenly distributed on the IE911.

The Kinetics of Radical Copolymerization of Styrene with Alkyl Methacrylate in a CSTR (연속반응기에서 스티렌과 메타크릴산 알킬의 라디칼 공중합 반응속도론)

  • Kim, Nam Seok;Seul, Soo Duk;Cheong, Young Eon;Park, Keun Ho;Choi, Jong jueng
    • Applied Chemistry for Engineering
    • /
    • v.10 no.5
    • /
    • pp.796-803
    • /
    • 1999
  • Solution copolymerization of styrene(St.) with methyl methacrylate(MMA), ethyl methacrylate(EMA) and n-butyl methacrylate(BMA) was carried out with benzoylperoxide(BPO) as an initiator in toluene at $80^{\circ}C$ in a continuous stirred tank reactor. Reaction volume and residence time were 0.6 liters and 3hours, respectively. The monomer reactivity ratios, $r_1(St.)$ and $r_2(RMA)$ determined by both the Kelen-Tudos method and the Fineman-Ross method were $r_1(St.)=0.60(0.61),\;r_2(MMA)=0.59(0.60);\;r_1(St.)=0.65(0.62),\;r_2(EMA)=0.55(0.52);\;r_1(St.)=0.75(0.67),\;r_2(BMA)=0.63(0.56)$. The cross-termination factor $\Phi$ of the copolymer over the entire St. compositions ranged from 0.26 to 0.96. The $\Phi$ factors of St.-RMA copolymer were increased with increasing St. content. The simulated conversions and copolymerization rates were compared with the experimental results. The average time to reach dynamic steady-state was three times and half of the residence time.

  • PDF

Nanophase Catalyst Layer for Direct Methanol Fuel Cells

  • Chang Hyuk;Kim Jirae
    • Journal of the Korean Electrochemical Society
    • /
    • v.4 no.4
    • /
    • pp.172-175
    • /
    • 2001
  • Nanophase catalyst layer for direct methanol fuel cell has been fabricated by magnetron sputtering method. Catalyst metal targets and carbon were sputtered simultaneously on the Nafion membrane surface at abnormally higher gas (Ar/He mixture) pressure than that of normal thin film processing. They could be coated as a novel structure of catalyst layer containing porous PtRu or Pt and carbon particles both in nanometer range. Membrane electrode assembly made with this layer led to a reduction of the catalyst loading. At the catalyst loading of 1.5mg $PtRu/cm^2$ for anode and 1mg $Pt/cm^2$ for cathode, it could provide $45 mW/cm^2$ in the operation at 2 M methanol, 1 Bar Air at 80"C. It is more than $30\%$ increase of the power density performance at the same level of catalyst loading by conventional method. This was realized due to the ultra fine particle sizes and a large fraction of the atoms lie on the grain boundaries of nanophase catalyst layer and they played an important role of fast catalyst reaction kinetics and more efficient fuel path. Commercialization of direct methanol fuel cell for portable electronic devices is anticipated by the further development of such design.

Factors Affecting Reactivity of Various Phenolic Compounds with the Folin-Ciocalteu Reagent (다양한 페놀성 물질과 Folin-Ciocalteu 시약의 반응성에 미치는 영향 요인 평가)

  • Hong, Jung-Il;Kim, Hyun-Jung;Kim, Ji-Yun
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.40 no.2
    • /
    • pp.205-213
    • /
    • 2011
  • The Folin-Ciocalteu (F-C) reagent has been extensively used for quantifying total phenolic contents in many different types of food materials. Since several different procedures of the assay methods using the F-C reagent have been applied, we investigated changes in reactivity of various phenolic compounds with the F-C reagent under three different assay conditions and factors affecting reactivity. Among 10 standard compounds tested, compounds with high hydroxyl density (number of -OH/molecular weight) showed a largely different response according to addition sequence of the F-C reagent or $Na_2CO_3$. Preincubation in $Na_2CO_3$ significantly reduced the reactivity of the phenolic compounds bearing galloyl moiety (e.g. gallic acid, tannic acid, and epigallocatechin-3-gallate) with the F-C reagent, while monophenol compounds including ferulic acid and sinapinic acid were more stable as compared to diphenols. There was little change in response to the F-C reagent of all phenolic compounds incubated in acidic pH; their reactivity except ferulic acid was reduced significantly when incubated in neutral or alkaline pH. Changes in reactivity of gallic acid incubated in $Na_2CO_3$ or neutral/alkaline pH conditions were the most prominent. $H_2O_2$ generated from phenolic compounds did not affect the reaction with the F-C reagents. The present results suggest that reactivity of different phenolic compounds with F-C reagent was affected considerably by different procedures of the assay, and the total phenolic contents could be fluctuated according to standard compounds and assay scheme.

In-situ Phase Transition Study of Minerals using Micro-focusing Rotating-anode X-ray and 2-Dimensional Area Detector (집속 회전형 X-선원과 이차원 검출기를 이용한 광물의 실시간 상전이 연구)

  • Seoung, Dong-Hoon;Lee, Yong-Moon;Lee, Yong-Jae
    • Economic and Environmental Geology
    • /
    • v.45 no.2
    • /
    • pp.79-88
    • /
    • 2012
  • The increased brightness and focused X-ray beams now available from laboratory X-ray sources facilitates a variety of powder diffraction experiments not practical using conventional in-house sources. Furthermore, the increased availability of 2-dimensional area detectors, along with implementation of improved software and customized sample environmental cells, makes possible new classes of in-situ and time-resolved diffraction experiments. These include phase transitions under variable pressure- and temperature conditions and ion-exchange reactions. Examples of in-situ and time-resolved studies which are presented here include: (1) time-resolved data to evaluate the kinetics and mechanism of ion exchange in mineral natrolite; (2) in-situ dehydration and thermal expansion behaviors of ion-exchanged natrolite; and (3) observations of the phases forming under controlled hydrostatic pressure conditions in ion-exchanged natrolite. Both the quantity and quality of the in-situ diffraction data are such to allow evaluation of the reaction pathway and Rietveld analysis on selected dataset. These laboratory-based in-situ studies will increase the predictability of the follow-up experiments at more specialized beamlines at the synchrotron.

Activation of Urease Apoprotein of Helicobacter pylori

  • Cho, Myung-Je;Lee, Woo-Kon;Song, Jae-Young;An, Young-Sook;Choi, Sang-Haeng;Choi, Yeo-Jeong;Park, Seong-Gyu;Choi, Mi-Young;Baik, Seung-Chul;Lee, Byung-Sang;Rhee, Kwang-Ho
    • The Journal of the Korean Society for Microbiology
    • /
    • v.34 no.6
    • /
    • pp.533-542
    • /
    • 1999
  • H. pylori produces urease abundantly amounting to 6% of total protein of bacterial mass. Urease genes are composed of a cluster of 9 genes of ureC, ureD, ureA, ureB, ureI, ureE, ureF, ureG, ureH. Production of H. pylori urease in E. coli was studied with genetic cotransformation. Structural genes ureA and ureB produce urease apoprotein in E. coli but the apoprotein has no enzymatic activity. ureC and ureD do not affect urease production nor enzyme activity ureF, ureG, and ureH are essential to produce the catalytically active H. pylori urease of structural genes (ureA and ureB) in E.coli. The kinetics of activation of H. pylori urease apoprotein were examined to understand the production of active H. pylori urease. Activation of H. pylori urease apoprotein, pH dependency, reversibility of $CO_2$ binding, irreversibility of $CO_2$ and $Ni^{2+}$ incorporation, and $CO_2$ dependency of initial rate of urease activity have been observed in vitro. The intrinsic reactivity (ko) for carbamylation of urease apoprotein co expressed with accessory genes was 17-fold greater than that of urease apoprotein expressed without accessory genes. It is concluded that accessory genes function in maximizing the carbamylating deprotonated ${\varepsilon}$-amino group of Lys 219 of urease B subunit and metallocenter of urease apoprotein is supposed to be assembled by reaction of a deprotonated protein side chain with an activating $CO_2$ molecule to generate ligands that facilitate productive nickel binding.

  • PDF