Browse > Article
http://dx.doi.org/10.9719/EEG.2012.45.2.079

In-situ Phase Transition Study of Minerals using Micro-focusing Rotating-anode X-ray and 2-Dimensional Area Detector  

Seoung, Dong-Hoon (Department of Earth System Sciences, Yonsei University)
Lee, Yong-Moon (Department of Earth System Sciences, Yonsei University)
Lee, Yong-Jae (Department of Earth System Sciences, Yonsei University)
Publication Information
Economic and Environmental Geology / v.45, no.2, 2012 , pp. 79-88 More about this Journal
Abstract
The increased brightness and focused X-ray beams now available from laboratory X-ray sources facilitates a variety of powder diffraction experiments not practical using conventional in-house sources. Furthermore, the increased availability of 2-dimensional area detectors, along with implementation of improved software and customized sample environmental cells, makes possible new classes of in-situ and time-resolved diffraction experiments. These include phase transitions under variable pressure- and temperature conditions and ion-exchange reactions. Examples of in-situ and time-resolved studies which are presented here include: (1) time-resolved data to evaluate the kinetics and mechanism of ion exchange in mineral natrolite; (2) in-situ dehydration and thermal expansion behaviors of ion-exchanged natrolite; and (3) observations of the phases forming under controlled hydrostatic pressure conditions in ion-exchanged natrolite. Both the quantity and quality of the in-situ diffraction data are such to allow evaluation of the reaction pathway and Rietveld analysis on selected dataset. These laboratory-based in-situ studies will increase the predictability of the follow-up experiments at more specialized beamlines at the synchrotron.
Keywords
in-situ; X-ray diffraction; phase transition; natrolite; sample environmental cell;
Citations & Related Records
연도 인용수 순위
  • Reference
1 (2010a) Direct Drive Type Rotor Target (FXRT) Instruction Manual, Manual No. ME14003C01. Rigaku Corporation, Tokyo.
2 (2010b) R-AXIS IV++ CE MARKING SYSTEM Instruction Manual, Manual No. ME11526A06. Rigaku Corporation, Tokyo.
3 (2010c) Ra-Micro7 HFM Tabletop Rotating Anode X-Ray Generator Instruction Manual, Manual No. ME14057A04. Rigaku Corporation, Tokyo.
4 Artioli, G. (1997) In situ powder diffraction studies of temperature induced transformations in minerals. Nucl. Instrum. Methods Phys. Res., Sect. B, 133(1-4), 45-49.   DOI
5 Artioli, G., Smith, J.V. and Pluth, J.J. (1986) X-ray structure refinement of mesolite. Acta Cryst., C42, 937-942.
6 Artioli, G., Stahl, K. and Hanson, J.C. (1996) The dehydration process in the natural zeolite laumontite: A real-time synchrotron x-ray powder diffraction study. Mater. Sci. Forum, 228-231, 369.
7 Baur, W.H. and Joswig, W. (1996) The phases of natrolite occuring during dehydration and rehydration studied by single crystal x-ray diffraction methods between room temperature and 923K. N. Jb. Miner. Mh., 171-187.
8 Baur, W.H., Kassner, D., Kim, C.-H. and Sieber, N.H. (1990) Flexibility and distortion of the framework of natrolite: crystal structures of ion-exchanged natrolites. Eur. J. Mineral., 2, 761-769.   DOI
9 Bell, P.M. and Mao, H.K. (1979) Absolute pressure measurements and their comparison with the ruby fluorescence (R1) pressure scale to 1.5 Mbar. Carnegie Inst. Washington Year Book, 78, p.665-669.
10 Christensen, A.N., Norby, P. and Hanson, J.C. (1995) Chemical reaction in the system MgO-MgCl2-H2O followed by time-resolved synchrotron x-ray powder diffraction. J. Solid State Chem., 114, 556-559.   DOI
11 Christensen, A.N.l., Jensen, T.R., Norby, P. and Hanson, J.C. (1998) In situ Synchrotron X-ray powder diffraction studies of Crystallization of microporous aluminophosphates and $Me^{2+}$-substituted aluminophosphates. Chem. Mater., 10, 1688-1693.   DOI
12 Coppens, P. (1992) Synchrotron Radiation Crystallography. Academic Press, London.
13 Dyer, A. and Faghihian, H. (1998) Diffusion in heteroionic zeolites: part 1. Diffusion of water in heteroionic natrolites. Microporous Mesoporous Mater., 21, 27-38.   DOI
14 Fang, Z.H. (2005) Temperature dependence of volume thermal expansion for NaCl and KCl crystals. Physica B-Condensed Matter, 357(3-4), 433-438.   DOI   ScienceOn
15 Finger, L.W. (1989) Synchrotron Powder Diffraction. In D.L. Bish, and J.E. Post, Eds. Modern Powder Diffraction, 20, p. 309-332. Mineralogical Society of America, Washinton, DC.
16 Hammersley, A.P. (1998) FIT2D: V9.129 Reference Manual V3.1.
17 Harford, J. and Squire, J. (1997) Time-resolved diffraction studies of muscle using synchrotron radiation. Reports On Progress in Physics, 60(12), 1723-1787.   DOI
18 Klaproth, M.H. (1803) XV Ges. Naturforsch. Freunde. Berlin N. Schr., 4.
19 Klug, H.P. and Alexander, L.E. (1974) X-ray diffraction procedures for polycrystalline and amorphous materials; 2nd. edition. 716p. Wiley Interscience, New York.
20 Kvick, A., Stahl, K. and Smith, J.V. (1985) A neutron diffraction study of the bonding of zeolitic water in scolecite at 20K. Z. Kristallogr., 171, 141-154.   DOI
21 Lee, Y., Hriljac, J.A., Vogt, T., Parise, J.B. and Artioli, G. (2001) First Structural Investigation of a Superhydrated Zeolite. J. Am. Chem. Soc., 123, 12732-12733.   DOI
22 Lee, Y., Vogt, T., Hriljac, J.A., Parise, J.B. and Artioli, G. (2002a) Pressure-Induced Volume Expansion of Zeolites in the Natrolite family. J. Am. Chem. Soc., 124, 5466-5475.   DOI   ScienceOn
23 Lee, Y., Vogt, T., Hriljac, J.A., Parise, J.B., Hanson, J.C. and Kim, S.J. (2002b) Non-framework cation migration and irreversible pressure-induced hydration in a zeolite. Nature, 420, 485-489.   DOI   ScienceOn
24 Lee, Y., Hriljac, J.A., Parise, J.B. and Vogt, T. (2005) Pressure- induced stabilization of ordered paranatrolite: A new insight into the paranatrolite controversy. Am. Mineral., 90, 252-257.   DOI
25 Lee, Y., Lee, Y. and Seoung, D. (2010) Natrolite may not be a "soda-stone" anymore: Structural study of fully K-, Rb-, and Cs-exchanged natrolite. Am. Mineral., 95(11-12), 1636-1641.   DOI
26 Lee, Y., Seoung, D., Jang, Y.-N., Bai, J. and Lee, Y. (2011a) Structural studies of NH(4)-exchanged natrolites at ambient conditions and high temperature. Am. Mineral., 96(8-9), 1308-1315.   DOI
27 Lee, Y., Seoung, D. and Lee, Y. (2011b) Natrolite is not a "soda-stone" anymore: Structural study of alkali (Li+), alkaline-earth (Ca2+, Sr2+, Ba2+) and heavy metal (Cd2+, Pb2+, Ag+) cation-exchanged natrolites. Am. Mineral., 96, 1718-1724.   DOI
28 Lee, Y., Seoung, D., Liu, D., Park, M.B., Hong, S.B., Chen, H., Bai, J., Kao, C.-C., Vogt, T. and Lee, Y. (2011c) In-situ dehydration studies of fully K-,Rb-, and Cs-exchanged natrolites. Am. Mineral., 96(2-3), 393-401.   DOI
29 Mannsfeld, S.C. (2009) WxDiff. Stanford Synchrotron Radiation Lightsource.
30 Mao, H.K. and Hemley, R.J. (1996) Experimental studies of Earth deep interior: Accuracy and versatility of diamond cells. Phil. Trans. R. Soc. Lond. A, 354, 1315-1333.   DOI
31 Pauling, L. (1930) The structure of some sodium and calcium aluminosilicates. Proc. Nat. Acad. Sci., 16, 453-459.   DOI
32 Meier, W.M. (1960) The crystal structure of natrolite. Z. Kristallogr., 113, 430-444.   DOI
33 Norby, P. (1997) Synchrotron powder diffraction using Imaging Plates; Crystal structure determination and Reitveld refinement. J. Appl. Crystallogr., 30, 21-30.   DOI
34 Parise, J.B., Cahill, C.L. and Lee, Y. (2000) Dynamic Powder Crystallography at Synchrotron Sources. Can. Mineral., 38, 777-800.   DOI
35 Stahl, K. (1994) Real-time powder diffraction studies of zeolite dehydration processes. Mater. Sci. Forum, 166-169(Pt. 2), 571-6.
36 Yamazaki, A., Kamioka, K., Matsumoto, H. and Otsuka, R. (1987) Structure Refinement of K-exchanged Natrolite by Rietveld Method. Mem. School Sci. Eng., Waseda University, 118, 40-44.