• Title/Summary/Keyword: Reaction Accuracy

Search Result 396, Processing Time 0.034 seconds

Sexing of Sheep Embryos Produced In vitro by Polymerase Chain Reaction and Sex-specific Polymorphism

  • Saravanan, T.;Nainar, A. Mahalinga;Kumanan, K.;Kumaresan, A.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.16 no.5
    • /
    • pp.650-654
    • /
    • 2003
  • The accuracy of Polymerase chain reaction (PCR) assay in sexing of sheep embryos was assessed in this study. A total of 174 ovine embryos produced in vitro at different stages of development (2, 4-8 cell stages, morula and blastocyst) were sexed. The universal primers (P1-5EZ and P2-3EZ) used in this assay amplified ZFY/ZFX-specific sequences and yielded a 445 bp fragment in both sexes. Restriction enzyme analysis of ZFY/ZFX-amplified fragments with Sac I exhibited polymorphism between sexes, three and two fragments in males and in females, respectively. For verification of accuracy, blood samples of known sex were utilized as positive controls in each test. The mean percentages of sex identification by this method at 2 cell, 4-8 cell, morula and blastocyst were $73.00{\pm}5.72$, $89.77{\pm}3.79$, $3.33{\pm}8.08$ and $79.6{\pm}9.09$, espectively with the over all male to female ratio of 1:0.87. It is concluded that the ZFY/ZFX based method is highly reliable for the sexing of sheep embryos.

A study on selenium quantification using ICP-MS with oxygen reactive gas in soil of Korea

  • Hyun-Young Kim;Young-Kyu Hong;Jin-Wook Kim;Sung-Chul Kim
    • Analytical Science and Technology
    • /
    • v.37 no.4
    • /
    • pp.230-238
    • /
    • 2024
  • This study evaluates a method for quantifying selenium (Se) concentration in soil using inductively coupled plasma mass spectrometry (ICP-MS), with oxygen as a reaction gas. This approach addresses the challenge of detecting low levels of Se in complex soil matrices and aims to effectively minimize interference problems typically associated with argon plasma in traditional ICP-MS analyses. The analytical method utilizes conditions optimized for minimizing spectral interference and were validated by linearity, accuracy, precision, limit of detection (LOD), and limit of quantification (LOQ). The method demonstrated good linearity, high accuracy (90-97 %), and remarkable sensitivity, achieving detection and quantification limits of 0.15 ㎍/kg and 0.44 ㎍/kg, respectively. Developed analysis method for Se in soil was applied to field samples in the different regions of South Korea and Se concentration ranged from 0.11 to 0.52 mg/kg. Correlation analysis between Se concentration and soil properties showed that Se concentration was significantly correlated with cation exchange capacity (CEC) and available phosphorus among other soil properties.

Characterization of energetic meterials using thermal calorimetry (등전환 방법을 이용한 고에너지 물질의 노화 효과 예측)

  • Kim, Yoocheon;Oh, Juyoung;Ambekar, Aniruda;Yoh, Jai-ick
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.547-553
    • /
    • 2017
  • Thermal analysis of three energetic materials used in pyroelectric device was performed using Differential Scanning Calorimetry (DSC). The theoretical method for extracting the reaction rate equation of energetic materials using DSC experimental data is proposed and the reaction rate extraction is performed. The results of the DSC were analyzed by the conversion method such as Friedman. Activation energy and frequency factor according to mass fraction were extracted to complete the reaction rate equation. The extracted reaction rate equation has a form that represents the entire chemical reaction process, not the assumption that the chemical reaction process of the high energy material is a main step in several stages. It has considerable advantages in terms of theoretical and accuracy as compared with the chemical reaction rate form extracted through conventional thermal analysis experiments. Using the derived reaction rate equation, we predicted the performance change of three energetic materials operating on actual storage condition over 20 years.

  • PDF

Micro-Vibration Measurement, Analysis and Attenuation Techniques of Reaction Wheel Assembly in Satellite (인공위성 반작용휠의 미소진동 측정, 해석 및 저감 기술)

  • Oh, Shi-Hwan;Rhee, Seung-Wu
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.30 no.8
    • /
    • pp.126-132
    • /
    • 2002
  • Jitter induced from several payloads on-board satellites degrade the performance of pointing accuracy and attenuate the resolving power of highly-precise camera image such as KOMPSAT II. In this paper, we introduce a micro-vibration measurement technique, analysis of dynamic characteristics, and modeling method for a reaction wheel assembly which is one of the major sources of jitter in satellites and an effective vibration reduction techniques are considered. Based on these techniques, vibration measurement and passive control were performed with an micro-vibration generator which was designed to have similar dynamic performances with an actual reaction wheel assembly above 50Hz.

Error Analysis of Reaction Wheel Speed Detection Methods Due to Non-uniformity of Tacho Pulse Duration (타코 펄스 불균일성이 존재하는 반작용휠의 속도측정 방법 오차 분석)

  • Oh, Shi-Hwan;Yong, Ki-Lyuk
    • Aerospace Engineering and Technology
    • /
    • v.8 no.2
    • /
    • pp.92-97
    • /
    • 2009
  • Two conventional speed detection methods (Elapsed-time method and Pulse-count method) are analyzed and compared for a high speed motor with digital tacho pulse with non-uniformity. In general, the elapsed-time method usually has better performance than a pulse-count method in case sufficiently high speed clock is used to measure the time difference. But if a tacho pulse non-uniformity exists in the reaction wheel - most of reaction wheel has a certain amount of non-uniformity - the accuracy of the elapsed-time method is degraded significantly. Thus the performance degradation is analyzed with respect to the level of non-uniformity of tacho pulse distribution and an allowable bound is suggested.

  • PDF

Analysis of Biomechanical Differences based on Distance Changes in Connection with Approach Swings of Tour-professional Golfers

  • You, Moon-Seok;Lee, Kyung-Ill
    • Korean Journal of Applied Biomechanics
    • /
    • v.26 no.1
    • /
    • pp.83-92
    • /
    • 2016
  • Objective: This study aimed to compare differences in biomechanical factors according to distance changes in relation to approaches during a round of golf to obtain basic data on golf swings. Methods: The research subjects were 8 KPGA-affiliated professional golfers who performed approach shots that put a ball into a circle of 8 feet in diameter from distances of 30, 50, and 70 m. Data were collected by using six infrared cameras and a ground reaction force device, which were applied to calculate biomechanical factors by using Kwon3D XP. The calculated data were subjected to one-way ANOVA by using SPSS 20.0, with the significance level set at p value of 0.05. Results: Elapsed time, stance width, clubhead position variation, clubhead synthesis speed, and cocking angle significantly differed according to distance change during the approach swing. Clubhead speed was positively related with stance width and clubhead displacement. Ground reaction force significantly differed according to distance change during the approach swing. Factors before and after showed differences in other states, except in the impact state. Conclusion: In the present study, we drew several conclusions regarding biomechanical factors and ground reaction forces according to distance change in the approach swing of professional golfers. According to these conclusions, we suggest that distance control with swing range is more important than power control in maintaining the accuracy and consistency of golf swing and is the most important mechanism of golf swing.

On-line Conversion Estimation for Solvent-free Enzymatic Esterification System with Water Activity Control

  • Lee, Sun-Bok;Keehoon Won
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.7 no.2
    • /
    • pp.76-84
    • /
    • 2002
  • On-line conversion estimation of enzymatic esterification reactions in solvent-free media was investigated. In principle, conversion to ester can be determined from the amount of water produced by the reaction, because water is formed as a by-product in a stoichiometric manner. In this study, we estimated the water production rate only from some measurements of relative humidity and water balances without using any analytical methods. In order to test the performance of the on-line conversion estimation, the lipase-catalyzed esterification of n-capric acid and n-decal alcohol in solvent-free media was performed whilst controlling water activity at various values. The reaction conversions estimated on-line were similar to those determined by offline gas chromatographic analysis. However, when the water activity was controlled at higher values, discrepancies between the estimated conversion values and the measured values became significant. The deviation was found to be due to the inaccurate measurement of the water content in the reaction medium during the initial stages of the reaction. Using a digital filter, we were able to improve the accuracy of the on-line conversion estimation method considerably. Despite the simplicity of this method, the on-line estimated conversions were in good agreement with the off-line measured values.

A Study on Classification Evaluation Prediction Model by Cluster for Accuracy Measurement of Unsupervised Learning Data (비지도학습 데이터의 정확성 측정을 위한 클러스터별 분류 평가 예측 모델에 대한 연구)

  • Jung, Se Hoon;Kim, Jong Chan;Kim, Cheeyong;You, Kang Soo;Sim, Chun Bo
    • Journal of Korea Multimedia Society
    • /
    • v.21 no.7
    • /
    • pp.779-786
    • /
    • 2018
  • In this paper, we are applied a nerve network to allow for the reflection of data learning methods in their overall forms by using cluster data rather than data learning by the stages and then selected a nerve network model and analyzed its variables through learning by the cluster. The CkLR algorithm was proposed to analyze the reaction variables of clustering outcomes through an approach to the initialization of K-means clustering and build a model to assess the prediction rate of clustering and the accuracy rate of prediction in case of new data inputs. The performance evaluation results show that the accuracy rate of test data by the class was over 92%, which was the mean accuracy rate of the entire test data, thus confirming the advantages of a specialized structure found in the proposed learning nerve network by the class.

Comparative Study of Text Entry Speed and Accuracy Using the Three Different Keyboard Type in Students with Cerebral Palsy: Case Study (키보드 유형에 따른 뇌성마비 학생의 문자입력 속도 및 정확도 비교: 사례연구)

  • Jeong, Dong-Hoon
    • Journal of the Korean Society of Physical Medicine
    • /
    • v.10 no.1
    • /
    • pp.23-35
    • /
    • 2015
  • PURPOSE: People with physical disabilities such as cerebral palsy usually experience obstacles when interacting with computer through conventional keyboard because of their motor disabilities. The purpose of this study is empirically compare of text entry(alphabet and word) speed and accuracy using the three different keyboard type on four students(male 2 and female 2) with cerebral palsy. METHODS: This research design used a replicated single-case experimental approach to compare the individual performance. An alternating treatments design was used to examine the effectiveness of standard QWERTY keyboard and alternative keyboard(mini and big keyboard) on computer access for students with cerebral palsy. To avoid changes in posture that influence a keyboard character entry training and evaluation was carried out using his sitting in a wheelchair. Compass software program used in this study as an assessment tool to measure speed and accuracy when performance of text entry(alphabet and word). This was repeated until the stable status of reaction time. RESULTS: As a result, the alternative keyboard seems to be the most effective device for students with cerebral palsy to perform text entry. But various factors such as peculiarity of motor disabilities, experience and preferences of the user are heavily related. CONCLUSION: Thus, we must perform the objective and systematic assessment for computer access and if sustained training is accomplished, it could to improve speed and accuracy of text entry(alphabet and word).

Accuracy and Reliability of Ground Reaction Force System and Effect of Force Platform Mounting and Environment (지면반력장비의 정밀성, 신뢰도와 장비설치.사용 환경의 영향)

  • Park, Young-Hoon;Youm, Chang-Hong;Sun, Sheng;Seo, Kook-Woong;Kim, Eui-Hwan;Kim, Tae-Whan
    • Korean Journal of Applied Biomechanics
    • /
    • v.17 no.1
    • /
    • pp.1-8
    • /
    • 2007
  • Ground reaction force (GRF) measures are one of the most commonly used in biomechanical study. GRF system is very useful educational tool to explain and demonstrate the Newton's law of universal gravitation and laws of motion as well. However, accuracy, intra- and inter- force platform measures' consistency, reliability, noise, and the effect of platform mounting to GRF measures were not clearly viewed. The aim of this study was to examine the above. GRFs of a plastic dummy and two subjects' quiet upright standing were collected at four university laboratories eight force platforms. The types of platforms, analysis programs, and platform set-up were various. Three 100s-trials were conducted with sampling frequency of 100 Hz. First two trials' vertical component of GRFs, Fz, and CoP sway ranges of mid-60s-portion of 100s trials were analyzed by the paired t-tests and one-way ANOVA. Six of eight platforms' 1st and 2nd trial dummy Fz were statistically different (p<.05) and all platforms ICC were poor (<.28). Fz of the two platforms in every four laboratories were statistically different (p<.05). There were white noises and/or very distinctive noises at specific frequency ranges in all Fz measures. 5 Hz low-pass filtering made clear the Fz differences. CoP ranges of dummy were less than 0.5 cm and the best was 0.02 cm. This CoP range finding agrees with previous results suggests the importance of force platform mounting and A/D card resolution.