• Title/Summary/Keyword: Reaction

Search Result 33,624, Processing Time 0.051 seconds

Electrochemical Effectiveness Factors for Butler-Volmer Reaction Kinetics in Active Electrode Layers of Solid Oxide Fuel Cells

  • Nam, Jin Hyun
    • Journal of Electrochemical Science and Technology
    • /
    • v.8 no.4
    • /
    • pp.344-355
    • /
    • 2017
  • In this study, a numerical approach is adopted to investigate the effectiveness factors for distributed electrochemical reactions in thin active reaction layers of solid oxide fuel cells (SOFCs), taking into account the Butler-Volmer reaction kinetics. The mathematical equations for the electrochemical reaction and charge conduction process were formulated by assuming that the active reaction layer has a small thickness, homogeneous microstructure, and high effective electronic conductivity. The effectiveness factor is defined as the ratio of the actual reaction rate (or equivalently, current generation rate) in the active reaction layer to the nominal reaction rate. From extensive numerical calculations, the effectiveness factors were obtained for various charge transfer coefficients of 0.3-0.8. These effectiveness data were then fitted to simple correlation equations, and the resulting correlation coefficients are presented along with estimated magnitude of error.

The Significance of Pyrazine Formation in Flavor Generation during the Maillard Reaction

  • Yoo, Seung-Seok
    • Preventive Nutrition and Food Science
    • /
    • v.2 no.4
    • /
    • pp.360-367
    • /
    • 1997
  • The chemistry background of the Maillard reaction focused on pyrazines and factors affecting the reaction products were reviewed. The Maillard reaction, also called a non-enzymatic browning reaction, is quite complex and generates numerous reaction products. In processed foods, it is generally accepted as a key reaction to produce flavor components. Specially, pyrazines possess an important impact character on the roasted foods with other heterocyclic compounds. The Maillard reaction is initiated by condensation between reducing sugar and amino group, and N-glycosylamines are produced via Schiff base with dehydration of water. After the rearrangement of the N-glycosylamines, they follow transformation into deoxyhexosones which are reactive intermediates. Degradation and fragmentation are facilitated by rearranged compounds. By condensation, pyrazine, one of the final Maillard products, is generated as a relatively stable form to provide specific aromas. During the processes of the reaction, chemical or physical environmental parameters affect the formation of the products.

  • PDF

Intramolecular Esterification by Lipase Powder in Microaqueous Cycohexane (미소 수용 Cyclohexange 중에서 분말 Lipase에 의한 분자내 에스테르화반응)

  • 이민규;감삼규
    • Journal of Life Science
    • /
    • v.5 no.4
    • /
    • pp.155-161
    • /
    • 1995
  • The effects of substrate concentration, enzyme concentration, reaction temperature, and water content were investigated in intramolecular esterification. This study used cyclohexane as organic solvent, power lipase as enzyme, and benzyl alcohol and octanoic acid as substrate. The initial reaction rate was found to be proportional to enzyme concentration; followed Michaelis-Menten equation for octanoic acid; and was inhibited by benzyl alcohol . The observed initial reaction rate first increased, then decreased with increasing reaction temperature, giving rise to the maximum rate at 20$\circ$. The drop in the reaction rate at higher temperature was to partition equilibrium change of substrate between organic solvent and hydration layer of enzyme molecule in addition to the deactivation by enzyme denaturation. Water layer surrounding enzyme molecule seemed to activate in organic solvent and the realistic reaction was done in the water layer. In the enzymatic reaction in organic solvent, the initial reaction rate was influenced by partition quilibrium of substrate, so the optimum condition of substrate concentration, enzyme concentration, reaction temperature, and water content would give a good design tool.

  • PDF

Estimating Diffusion-Controlled Reaction Parameters in Photoinitiated Polymerization of Dimethacrylate Macromonomers

  • Choe, Youngson
    • Macromolecular Research
    • /
    • v.11 no.5
    • /
    • pp.311-316
    • /
    • 2003
  • The kinetics of photoinitiated polymerization of dimethacrylate macromonomers have been studied to determine the diffusion-controlled reaction parameters using attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR). A predicted kinetic rate expression with a diffusion control factor was employed to estimate an effective rate constant and to define the reaction-controlled and diffusion-controlled regimes in the photopolymerization. An effective rate constant, k$_{e}$, can be obtained from the predicted kinetic rate expression. At the earlier stages of polymerization, the average values of kinetic rate constants do not vary during the reaction time. As the reaction conversion, $\alpha$, reaches the critical conversion, $\alpha$$_{c}$, in the predicted kinetic expression, the reaction becomes to be controlled by diffusion due to the restricted mobility of dimethacrylate macromonomers. A drop in value of effective rate constant causes a drastic decrease of reaction rate at the later stages of polymerization. By determining the effective rate constants, the reaction-controlled and diffusion-controlled regimes were properly defined even in the photopolymerization reaction system.m.m.

Novel Heterogeneous Carbohydrase Reaction Systems for the Direct Conversion of Insoluble Carbohydrates: Reaction Characteristics and their Applications

  • Lee, Yong-Hyun;Park, Dong-Chan
    • Journal of Microbiology and Biotechnology
    • /
    • v.9 no.1
    • /
    • pp.1-8
    • /
    • 1999
  • Most carbohydrates exist in nature in an insoluble state, which reduces their susceptibility towards various carbohydrases. Accordingly, they require intensive pretreatment for structural modification to enhance an enzyme reaction. The direct conversion of insoluble carbohydrates has distinct advantages for special types of reaction, especially exo-type carbohydrase; however, its application is limited due to structural constraints. This paper introduces two novel heterogeneous enzyme reaction systems for direct conversion of insoluble carbohydrates; one is an attrition coupled enzyme reaction system containing attrition-milling media for enhancing the enzyme reaction, and the other is a heterogeneous enzyme reaction system using extruded starch as an insoluble substrate. The direct conversion of typically insoluble carbohydrates, including cellulose, starch, and chitin with their corresponding carbohydrases, including cellulase, amylase, chitinase, and cyclodextrin glucanotransferase, was carried out using two proposed enzyme reaction systems. The conceptual features of the systems, their reaction characteristics and mechanism, and the industrial applications of the various carbohydrates are analyzed in this review.

  • PDF

MPS eutectic reaction model development for severe accident phenomenon simulation

  • Zhu, Yingzi;Xiong, Jinbiao;Yang, Yanhua
    • Nuclear Engineering and Technology
    • /
    • v.53 no.3
    • /
    • pp.833-841
    • /
    • 2021
  • During the postulated severe accident of nuclear reactor, eutectic reaction leads to low-temperature melting of fuel cladding and early failure of core structure. In order to model eutectic melting with the moving particle semi-implicit (MPS) method, the eutectic reaction model is developed to simulate the eutectic reaction phenomenon. The coupling of mass diffusion and phase diagram is applied to calculate the eutectic reaction with the uniform temperature. A heat transfer formula is proposed based on the phase diagram to handle the heat release or absorption during the process of eutectic reaction, and it can combine with mass diffusion and phase diagram to describe the eutectic reaction with temperature variation. The heat transfer formula is verified by the one-dimensional melting simulations and the predicted interface position agrees well with the theoretical solution. In order to verify the eutectic reaction models, the eutectic reaction of uranium and iron in two semi-infinite domains is simulated, and the profile of solid thickness decrease over time follows the parabolic law. The modified MPS method is applied to calculate Transient Reactor Test Facility (TREAT) experiment, the penetration rate in the simulations are agreeable with the experiment results. In addition, a hypothetical case based on the TREAT experiment is also conducted to validate the eutectic reaction with temperature variation, the results present continuity with the simulations of TREAT experiment. Thus the improved method is proved to be capable of simulating the eutectic reaction in the severe accident.

Enzymatic Hydrolysis of Hydrophobic Triolein by Lipase in a Mone-phase Reaction System Containing Cyclodextrin; Reaction Characteristics

  • Lee, Yong-Hyun;Kim, Tae-Kwon;Shin, Hyun-Dong;Park, Dong-Chan
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.3 no.2
    • /
    • pp.103-108
    • /
    • 1998
  • A hydrophobic substrate triolein was hydrolyzed by lipase in a mono-phase reaction system containing cyclodextrin(CD) as emulsifier. The triolein was transformation to an emulsion-like state in the CD containing reaction system in contrast to the oil-droplet like state without CD due to the formation of an inclusion complex between the lipids and CDs. The hydyrolysis reaction increased substantially in the CD containing reaction system, and the optimum reaction conditions including the amount of lipase, ${\beta}$-CD concentration, and mixing ratio of triolein and ${\beta}$-CD, were determined. The performance of the enzyme reaction in a mono-phase reaction system was compared with that of a two-phase reaction system which used water immiscible hexane as the organic solvent. The role of a CD in the mono-phase reaction system was elucidated by comparing the degree of the inclusion complex formation with triolein and oleic acid, Km and Vmax values, and product inhibition by oleic aicd in aqueous and CD containing reaction systems. The resulting enhanced reaction seems to be caused by two phenomena; the increased accessibility of lipase to triolein and reduced product inhibition by oleic acid through the formation of an inclusion complex.

  • PDF

Interface Reaction Between LSMC and YSZ and Impedance Properties (LSMC와 YSZ의 계면반응 및 임피던스 특성)

  • 김재동;김구대;문지웅;김창은;이해원
    • Journal of the Korean Ceramic Society
    • /
    • v.35 no.9
    • /
    • pp.899-904
    • /
    • 1998
  • Interface reaction between LSMC and YSZ is discussed with chemical composition of LSMC. The reac-tivity between LSMC and YSZ increased with increasing Co amount and A-site deficient perovskite is very effective on reducing reactivity. The (La0.8Sr0.2)xMn0.8Co0.2O3 (X=0.9-1) composition is not reactive with YSZ in experimental range. The electrode reaction reaction resistance increases due to reaction product.

  • PDF

The Effect of CVD Reaction Variable on SnO2 Powder Characteristics

  • Kim, Kyoo-Ho
    • The Korean Journal of Ceramics
    • /
    • v.4 no.3
    • /
    • pp.235-239
    • /
    • 1998
  • Ultrafine $SnO_2$ powder was prepared by the diffusion mixing gas-phase reaction of $SnCl_4$(g) and water vapor. The effects of reaction variables, such as the chloride partial pressure, the reaction temperature, and the residence time is the reactor, on the powder size were examined systematically. Calculated concentration and distribution of chemical species, using the Burke-Schumann diffusion mixing model, were compared with the experimetal results. The effects of the reaction variables on the powder size were also discussed qualitatively.

  • PDF

Density Functional Theory Study of Competitive Reaction Pathways of Ti+ with Fluorinated Acetone in the Gas Phase

  • Hong, Ki-Ryong;Kim, Tae-Kyu
    • Journal of the Korean Chemical Society
    • /
    • v.56 no.1
    • /
    • pp.14-19
    • /
    • 2012
  • We investigate the doublet and quartet potential energy surfaces associated with the gas-phase reaction between $Ti^+$ and $CF_3COCH_3$ for two plausible reaction pathways, $TiF_2^+$ and $TiO^+$ formation pathways by using the density functional theory (DFT) method. The molecular structures of intermediates and transition states involved in these reaction pathways are optimized at the DFT level by using the PBE0 functional. All transition states are identified by using the intrinsic reaction coordinate (IRC) method, and the resulting reaction coordinates describe how $Ti^+$ activates $CF_3COCH_3$ and produces $TiF_2^+$ and $TiO^+$ as products. On the basis of presented results, we propose the most favorable reaction pathway in the reaction between $Ti^+$ and $CF_3COCH_3$.