• 제목/요약/키워드: ReLU

검색결과 102건 처리시간 0.025초

물체 검출 컨벌루션 신경망 설계를 위한 효과적인 네트워크 파라미터 추출 ((Searching Effective Network Parameters to Construct Convolutional Neural Networks for Object Detection))

  • 김누리;이동훈;오성회
    • 정보과학회 논문지
    • /
    • 제44권7호
    • /
    • pp.668-673
    • /
    • 2017
  • 최근 몇 년간 딥러닝(deep learning)은 음성 인식, 영상 인식, 물체 검출을 비롯한 다양한 패턴인식 분야에서 혁신적인 성능 발전을 거듭해왔다. 그에 비해 네트워크가 어떻게 작동하는지에 대한 깊은 이해는 잘 이루어지지 않고 있다. 본 논문은 효과적인 신경망 네트워크를 구성하기 위해 네트워크 파라미터들이 신경망 내부에서 어떻게 작동하고, 어떤 역할을 하고 있는지 분석하였다. Faster R-CNN 네트워크를 기반으로 하여 신경망의 과적합(overfitting)을 막는 드랍아웃(dropout) 확률과 앵커 박스 크기, 그리고 활성 함수를 변화시켜 학습한 후 그 결과를 분석하였다. 또한 드랍아웃과 배치 정규화(batch normalization) 방식을 비교해보았다. 드랍아웃 확률은 0.3일 때 가장 좋은 성능을 보였으며 앵커 박스의 크기는 최종 물체 검출 성능과 큰 관련이 없다는 것을 알 수 있었다. 드랍아웃과 배치 정규화 방식은 서로를 완전히 대체할 수는 없는 것을 확인할 수 있었다. 활성화 함수는 음수 도메인의 기울기가 0.02인 leaky ReLU가 비교적 좋은 성능을 보였다.

수위예측 알고리즘 정확도 향상을 위한 Hybrid 활성화 함수 개발 (Development of hybrid activation function to improve accuracy of water elevation prediction algorithm)

  • 유형주;이승오
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2019년도 학술발표회
    • /
    • pp.363-363
    • /
    • 2019
  • 활성화 함수(activation function)는 기계학습(machine learning)의 학습과정에 비선형성을 도입하여 심층적인 학습을 용이하게 하고 예측의 정확도를 높이는 중요한 요소 중 하나이다(Roy et al., 2019). 일반적으로 기계학습에서 사용되고 있는 활성화 함수의 종류에는 계단 함수(step function), 시그모이드 함수(sigmoid 함수), 쌍곡 탄젠트 함수(hyperbolic tangent function), ReLU 함수(Rectified Linear Unit function) 등이 있으며, 예측의 정확도 향상을 위하여 다양한 형태의 활성화 함수가 제시되고 있다. 본 연구에서는 기계학습을 통하여 수위예측 시 정확도 향상을 위하여 Hybrid 활성화 함수를 제안하였다. 연구대상지는 조수간만의 영향을 받는 한강을 대상으로 선정하였으며, 2009년 ~ 2018년까지 10년간의 수문자료를 활용하였다. 수위예측 알고리즘은 Python 내 Tensorflow의 RNN (Recurrent Neural Networks) 모델을 이용하였으며, 강수량, 수위, 조위, 댐 방류량, 하천 유량의 수문자료를 학습시켜 3시간 및 6시간 후의 수위를 예측하였다. 예측정확도 향상을 위하여 입력 데이터는 정규화(Normalization)를 시켰으며, 민감도 분석을 통하여 신경망모델의 은닉층 개수, 학습률의 최적 값을 도출하였다. Hybrid 활성화 함수는 쌍곡 탄젠트 함수와 ReLU 함수를 혼합한 형태로 각각의 가중치($w_1,w_2,w_1+w_2=1$)를 변경하여 정확도를 평가하였다. 그 결과 가중치의 비($w_1/w_2$)에 따라서 예측 결과의 RMSE(Roote Mean Square Error)가 최소가 되고 NSE (Nash-Sutcliffe model Efficiency coefficient)가 최대가 되는 지점과 Peak 수위의 예측정확도가 최대가 되는 지점을 확인할 수 있었다. 본 연구는 현재 Data modeling을 통한 수위예측의 정확도 향상을 위해 기초가 되는 연구이나, 향후 다양한 형태의 활성화 함수를 제안하여 정확도를 향상시킨다면 예측 결과를 통하여 침수예보에 대한 의사결정이 가능할 것으로 기대된다.

  • PDF

활성화 함수에 따른 유출량 산정 인공신경망 모형의 성능 비교 (Comparison of Artificial Neural Network Model Capability for Runoff Estimation about Activation Functions)

  • 김마가;최진용;방재홍;윤푸른;김귀훈
    • 한국농공학회논문집
    • /
    • 제63권1호
    • /
    • pp.103-116
    • /
    • 2021
  • Analysis of runoff is substantial for effective water management in the watershed. Runoff occurs by reaction of a watershed to the rainfall and has non-linearity and uncertainty due to the complex relation of weather and watershed factors. ANN (Artificial Neural Network), which learns from the data, is one of the machine learning technique known as a proper model to interpret non-linear data. The performance of ANN is affected by the ANN's structure, the number of hidden layer nodes, learning rate, and activation function. Especially, the activation function has a role to deliver the information entered and decides the way of making output. Therefore, It is important to apply appropriate activation functions according to the problem to solve. In this paper, ANN models were constructed to estimate runoff with different activation functions and each model was compared and evaluated. Sigmoid, Hyperbolic tangent, ReLU (Rectified Linear Unit), ELU (Exponential Linear Unit) functions were applied to the hidden layer, and Identity, ReLU, Softplus functions applied to the output layer. The statistical parameters including coefficient of determination, NSE (Nash and Sutcliffe Efficiency), NSEln (modified NSE), and PBIAS (Percent BIAS) were utilized to evaluate the ANN models. From the result, applications of Hyperbolic tangent function and ELU function to the hidden layer and Identity function to the output layer show competent performance rather than other functions which demonstrated the function selection in the ANN structure can affect the performance of ANN.

딥러닝 학습에서 최적의 알고리즘과 뉴론수 탐색 (Optimal Algorithm and Number of Neurons in Deep Learning)

  • 장하영;유은경;김혁진
    • 디지털융복합연구
    • /
    • 제20권4호
    • /
    • pp.389-396
    • /
    • 2022
  • 딥러닝(Deep Learning)은 퍼셉트론을 기반으로 하고 있으며 현재에는 이미지 인식, 음성 인식, 객체 검출 및 약물 개발 등과 같은 다양한 영역에서 사용되고 있다. 이에 따라 학습 알고리즘이 다양하게 제안되었고 신경망을 구성하는 뉴런수도 연구자마다 많은 차이를 보이고 있다. 본 연구는 현재 대표적으로 사용되고 있는 확률적 경사하강법(SGD), 모멘텀법(Momentum), AdaGrad, RMSProp 및 Adam법의 뉴런수에 따른 학습 특성을 분석하였다. 이를 위하여 1개의 입력층, 3개의 은닉층, 1개의 출력층으로 신경망을 구성하였고 활성화함수는 ReLU, 손실 함수는 교차 엔트로피 오차(CEE)를 적용하였고 실험 데이터셋은 MNIST를 사용하였다. 그 결과 뉴런수는 100~300개, 알고리즘은 Adam, 학습횟수(iteraction)는 200회가 딥러닝 학습에서 가장 효율적일 것으로 결론을 내렸다. 이러한 연구는 향후 새로운 학습 데이터가 주어졌을 경우 개발될 알고리즘과 뉴런수의 기준치에 함의를 제공할 것이다.

초임계 압력조건에서 기체수소-액체산소 연소해석의 층류화염편 라이브러리에 대한 인공신경망 학습 적용 (Application of Artificial Neural Network to Flamelet Library for Gaseous Hydrogen/Liquid Oxygen Combustion at Supercritical Pressure)

  • 전태준;박태선
    • 한국추진공학회지
    • /
    • 제25권6호
    • /
    • pp.1-11
    • /
    • 2021
  • 층류화염편 라이브러리에 대한 효율적인 계산과정을 개발하기 위하여 초임계 압력조건의 기체수소/액체산소 연소기에 대해 인공신경망을 이용한 기계학습과정이 적용되었다. 학습성능과 계산효율성에 근거한 최적의 계산과정을 찾기 위하여 은닉층에 대한 ReLU와 쌍곡탄젠트 함수의 25가지 조합이 선택되었다. 정확성이 우수한 높은 학습성능을 얻는데 쌍곡탄젠트 활성화함수가 적절하였다. 인공신경망의 학습성능을 개선하기 위해서 학습데이터 변환이 제안되었다. 4개의 은닉층에 최적의 노드를 배치할 때 학습성능 및 계산비용 관점에서 모두 효율적인 것으로 나타났다. 층류화염편 라이브러리의 보간법보다 인공신경망을 사용하는 경우 전체 계산시간은 37%, 시스템 메모리는 99.98% 감소되었다.

디지털 IIR Filter와 Deep Learning을 이용한 ECG 신호 예측을 위한 성능 평가 (Performance Evaluation for ECG Signal Prediction Using Digital IIR Filter and Deep Learning)

  • 윤의중
    • 문화기술의 융합
    • /
    • 제9권4호
    • /
    • pp.611-616
    • /
    • 2023
  • 심전도(electrocardiogram, ECG)는 심박동의 속도와 규칙성, 심실의 크기와 위치, 심장 손상 여부를 측정하는데 사용되며, 모든 심장질환의 원인을 찾아낼 수 있다. ECG-KIT를 이용하여 획득한 ECG 신호는 ECG 신호에 잡음을 포함하기 때문에 딥러닝에 적용하기 위해서는 ECG 신호에서 잡음을 제거해야만 한다. 본 논문에서는, ECG 신호에서 잡음은 Digital IIR Butterworth의 저역 통과 필터를 이용하여 제거하였다. LSTM의 딥러닝 모델을 사용하여 3가지 활성화 함수인 sigmoid(), ReLU(), tanh() 함수에 대한 성능 평가를 비교했을 때, 오차가 가장 작은 활성화 함수는 tanh() 함수 임을 확인하였으며, 또한 LSTM과 GRU 모델에 대한 성능 평가와 경과 시간을 비교한 결과 GRU 모델이 LSTM 모델보다 우수한 것을 확인하였다.

디지털 FIR 필터와 Deep Learning을 이용한 ECG 신호 예측 및 경과시간 (Predicton and Elapsed time of ECG Signal Using Digital FIR Filter and Deep Learning)

  • 윤의중
    • 문화기술의 융합
    • /
    • 제9권4호
    • /
    • pp.563-568
    • /
    • 2023
  • 심전도(electrocardiogram, ECG)는 심박동의 속도와 규칙성, 심실의 크기와 위치, 심장 손상 여부를 측정하는 데 사용되며, 모든 심장질환의 원인을 찾아낼 수 있다. ECG-KIT를 이용하여 획득한 ECG 신호는 ECG 신호에 잡음을 포함하기 때문에 딥러닝에 적용하기 위해서는 ECG 신호에서 잡음을 제거해야만 한다. 본 논문에서는, ECG 신호에 포함된 잡음은 Digital FIR 해밍 창함수를 이용한 저역통과 필터를 사용하여 제거하였다. LSTM의 딥러닝 모델을 사용하여 3가지 활성화 함수인 sigmoid(), ReLU(), tanh() 에 대한 성능 평가를 비교했을 때, 오차가 가장 작은 활성화 함수는 tanh() 함수 임을 확인하였고, batch size가 작은 경우가 큰 경우보다 시간이 많이 소요되었다. 또한 GRU 모델의 성능 평가의 결과가 LSTM 모델보다 우수한 것을 확인하였다.

다각형 용기의 품질 향상을 위한 딥러닝 구조 개발 (Development of Deep Learning Structure to Improve Quality of Polygonal Containers)

  • 윤석문;이승호
    • 전기전자학회논문지
    • /
    • 제25권3호
    • /
    • pp.493-500
    • /
    • 2021
  • 본 논문에서는 다각형 용기의 품질 향상을 위한 딥러닝 구조 개발을 제안한다. 딥러닝 구조는 convolution 층, bottleneck 층, fully connect 층, softmax 층 등으로 구성된다. Convolution 층은 입력 이미지 또는 이전 층의 특징 이미지를 여러 특징 필터와 convolution 3x3 연산하여 특징 이미지를 얻어 내는 층이다. Bottleneck 층은 convolution 층을 통해 추출된 특징 이미지상의 특징들 중에서 최적의 특징들만 선별하여 convolution 1x1 ReLU로 채널을 감소시키고convolution 3x3 ReLU를 실시한다. Bottleneck 층을 거친 후에 수행되는 global average pooling 연산과정은 convolution 층을 통해 추출된 특징 이미지의 특징들 중에서 최적의 특징들만 선별하여 특징 이미지의 크기를 감소시킨다. Fully connect 층은 6개의 fully connect layer를 거쳐 출력 데이터가 산출된다. Softmax 층은 입력층 노드의 값과 연산을 진행하려는 목표 노드 사이의 가중치와 곱을 하여 합하고 활성화 함수를 통해 0~1 사이의 값으로 변환한다. 학습이 완료된 후에 인식 과정에서는 학습 과정과 마찬가지로 카메라를 이용한 이미지 획득, 측정 위치 검출, 딥러닝을 활용한 비원형 유리병 분류 등을 수행하여 비원형 유리병을 분류한다. 제안된 다각형 용기의 품질 향상을 위한 딥러닝 구조의 성능을 평가하기 위하여 공인시험기관에서 실험한 결과, 양품/불량 판별 정확도 99%로 세계최고 수준과 동일한 수준으로 산출되었다. 검사 소요 시간은 평균 1.7초로 비원형 머신비전 시스템을 사용하는 생산 공정의 가동 시간 기준 내로 산출되었다. 따라서 본 본문에서 제안한 다각형 용기의 품질 향상을 위한 딥러닝 구조의 성능의 그 효용성이 입증되었다.

시계열 분석 모형 및 머신 러닝 분석을 이용한 수출 증가율 장기예측 성능 비교 (Comparison of long-term forecasting performance of export growth rate using time series analysis models and machine learning analysis)

  • 남성휘
    • 무역학회지
    • /
    • 제46권6호
    • /
    • pp.191-209
    • /
    • 2021
  • In this paper, various time series analysis models and machine learning models are presented for long-term prediction of export growth rate, and the prediction performance is compared and reviewed by RMSE and MAE. Export growth rate is one of the major economic indicators to evaluate the economic status. And It is also used to predict economic forecast. The export growth rate may have a negative (-) value as well as a positive (+) value. Therefore, Instead of using the ReLU function, which is often used for time series prediction of deep learning models, the PReLU function, which can have a negative (-) value as an output value, was used as the activation function of deep learning models. The time series prediction performance of each model for three types of data was compared and reviewed. The forecast data of long-term prediction of export growth rate was deduced by three forecast methods such as a fixed forecast method, a recursive forecast method and a rolling forecast method. As a result of the forecast, the traditional time series analysis model, ARDL, showed excellent performance, but as the time period of learning data increases, the performance of machine learning models including LSTM was relatively improved.

Network Coding for Energy-Efficient Distributed Storage System in Wireless Sensor Networks

  • Wang, Lei;Yang, Yuwang;Zhao, Wei;Lu, Wei
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제7권9호
    • /
    • pp.2134-2153
    • /
    • 2013
  • A network-coding-based scheme is proposed to improve the energy efficiency of distributed storage systems in WSNs (Wireless Sensor Networks). We mainly focus on two problems: firstly, consideration is given to effective distributed storage technology; secondly, we address how to effectively repair the data in failed storage nodes. For the first problem, we propose a method to obtain a sparse generator matrix to construct network codes, and this sparse generator matrix is proven to be the sparsest. Benefiting from this matrix, the energy consumption required to implement distributed storage is reduced. For the second problem, we designed a network-coding-based iterative repair method, which adequately utilizes the idea of re-encoding at intermediate nodes from network coding theory. Benefiting from the re-encoding, the energy consumption required by data repair is significantly reduced. Moreover, we provide an explicit lower bound of field size required by this scheme, which implies that it can work over a small field and the required computation overhead is very low. The simulation result verifies that the proposed scheme not only reduces the total energy consumption required to implement distributed storage system in WSNs, but also balances energy consumption of the networks.