• 제목/요약/키워드: Re-Entry Vehicle

검색결과 21건 처리시간 0.024초

Optimization Analysis of Trajectory for Re-Entry Vehicle Using Global Orthogonal Polynomial

  • Lee Dae-Woo
    • Journal of Mechanical Science and Technology
    • /
    • 제20권10호
    • /
    • pp.1557-1566
    • /
    • 2006
  • We present a procedure for the application of global orthogonal polynomial into an atmospheric re-entry maneuvering problem. This trajectory optimization is imbedded in a family of canonically parameterized optimal control problem. The optimal control problem is transcribed to nonlinear programming via global orthogonal polynomial and is solved a sparse nonlinear optimization algorithm. We analyze the optimal trajectories with respect to the performance of re-entry maneuver.

우주비행체의 대기권 재진입 기준궤적 해석 (Reference Trajectory Analysis of Atmosphere Re-entry for Space Vehicle)

  • 이대우;조겸래
    • 한국정밀공학회지
    • /
    • 제17권6호
    • /
    • pp.111-118
    • /
    • 2000
  • The design of reference trajectory with respect to drag acceleration is necessary to decelerate from hypersonic speed safely after atmosphere re-entry of space vehicle. The re-entry guidance design involves trajectory optimization, generation of a reference drag acceleration profile with the satisfaction of 6 trajectory constraints during the re-entry flight. This reference drag acceleration profile can be considered as the reference trajectory. The cost function is composed of the accumulated total heating on vehicle due to the reduction of weight. And a regularization is needed to prevent optimal drag profile from varying too fast and achieve realized trajectory. This paper shows the relations between velocity, drag acceleration and altitude in drag acceleration profile, and how to determine the reference trajectory.

  • PDF

재진입비행체의 궤적제어 (Trajectory Control for Re-entry Vehicle)

  • 박수홍;이대우
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1997년도 추계학술대회 논문집
    • /
    • pp.361-364
    • /
    • 1997
  • The re-enty guidance design involves trajectory optimization, generation of a reference drag acceleration profile with the satisfaction of trajectory constraints. This reference drag acceleration profile can be considered as the reference trajectory. This paper proposes the atmospheric re-entry system which is composed of longitudinal, later and range control. This paper shows the a performance of a re-entry guidance and control system using feedback linearization control and predictive control.

  • PDF

재진입 비행체의 진입 및 착륙단계 경로 생성 및 퍼지제어기 설계 (Trajectory Planning and Fuzzy Controller Design of a Re-entry vehicle on Approach and Landing phase)

  • 민찬오;조성진;이대우
    • 한국항공우주학회지
    • /
    • 제38권2호
    • /
    • pp.150-159
    • /
    • 2010
  • 재진입 비행체의 Approach & Landing단계는 Steep Glideslope 단계, Circular Flare 단계, Flare Maneuver 단계로 이루어지며, 본 논문에서는 실시간 경로 생성을 위하여 기하학적 조건을 이용한 기준궤적 생성 알고리즘을 사용하였다. 이를 통하여 재진입비행체의 착륙 안정성을 고려한 기준궤적을 빠른 시간 안에 생성할 수 있다. 그리고 본 논문에서는 비선형 시스템에 대하여 강건성을 가지는 Mamdani Fuzzy PD Controller를 통한 종방향 및 횡방향 제어기를 설계하였다. 또한 Downrange 와 Crossrange의 초기 오차를 포함하는 시뮬레이션을 수행하여, 제안된 Fuzzy 제어기의 우수한 성능을 확인하였다.

Comparison of Ballistic-Coefficient-Based Estimation Algorithms for Precise Tracking of a Re-Entry Vehicle and its Impact Point Prediction

  • Moon, Kyung Rok;Kim, Tae Han;Song, Taek Lyul
    • Journal of Astronomy and Space Sciences
    • /
    • 제29권4호
    • /
    • pp.363-374
    • /
    • 2012
  • This paper studies the problem of tracking a re-entry vehicle (RV) in order to predict its impact point on the ground. Re-entry target dynamics combined with super-high speed has a complex non-linearity due to ballistic coefficient variations. However, it is difficult to construct a database for the ballistic coefficient of a unknown vehicle for a wide range of variations, thus the reliability of target tracking performance cannot be guaranteed if accurate ballistic coefficient estimation is not achieved. Various techniques for ballistic coefficient estimation have been previously proposed, but limitations exist for the estimation of non-linear parts accurately without obtaining prior information. In this paper we propose the ballistic coefficient ${\beta}$ model-based interacting multiple model-extended Kalman filter (${\beta}$-IMM-EKF) for precise tracking of an RV. To evaluate the performance, other ballistic coefficient model based filters, which are gamma augmented filter, gamma bootstrapped filter were compared and assessed with the proposed ${\beta}$-IMM-EKF for precise tracking of an RV.

Assessment of the aerodynamic and aerothermodynamic performance of a high-lift reentry vehicle

  • Pezzella, Giuseppe
    • Advances in aircraft and spacecraft science
    • /
    • 제2권2호
    • /
    • pp.109-124
    • /
    • 2015
  • This paper deals with the aerodynamic and aerothermodynamic trade-off analysis of a hypersonic flying test bed. Such vehicle will have to be launched with an expendable launcher and shall re-enter the Earth atmosphere allowing to perform several experiments on critical re-entry phenomena. The demonstrator under study is a re-entry space glider characterized by a relatively simple vehicle architecture able to validate hypersonic aerothermodynamic design database and passenger experiments, including thermal shield and hot structures. A summary review of the aerodynamic characteristics of two flying test bed concepts, compliant with a phase-A design level, has been provided hereinafter. Several design results, based both on engineering approach and computational fluid dynamics, are reported and discussed in the paper.

저궤도 재진입 비행체의 공력해석 (AERODYNAMIC ANALYSIS OF SUB-ORBITAL RE-ENTRY VEHICLE)

  • 김철완;이융교;이대성
    • 한국전산유체공학회지
    • /
    • 제13권2호
    • /
    • pp.1-7
    • /
    • 2008
  • For Aerodynamic analysis of vehicle at altitude, 100km, the validity of governing equations based on continuum model, was reviewed. Also, as the preliminary study for the sub-orbital space plane development, a candidate geometry was suggested and computational fluid dynamic(CFD) analysis was performed for various angles of attack in subsonic and supersonic flow regimes to analyze the aerodynamic characteristics and performance. The inviscid flow analyses showed that the stall starts at angle of attack above $20^{\circ}$, the maximum drag is generated at angle of attack, $87^{\circ}$ and the maximum lift to drag ratio is about 8 in subsonic flow. In supersonic, the stall angle is about $40^{\circ}$ and the maximum drag is generated at angle of attack, $90^{\circ}$. Also, mach number distribution of re-entry vehicle was computed versus altitudes.

One optimization on the flight trajectories of re-entry vehicle

  • Takano, Hiroyuki;Nakamura, Kazuki;Baba, Yoriaki
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1996년도 Proceedings of the Korea Automatic Control Conference, 11th (KACC); Pohang, Korea; 24-26 Oct. 1996
    • /
    • pp.307-310
    • /
    • 1996
  • In this paper, we deal with some numerical analyses of a re-entry vehicle in a 2-dimensional plane as an optimal control problem. To reduce the dynamic load, the heat load and the oscillation in the trajectory, we researched the trajectories in which the load factor or the rate of flight path angle was minimized during re-entry. In addition to that, taking advantage of the monotonous subarc method and the folded time-axis method, we tried to find the heat-less and load-less trajectory with combinations of some sectional functionals so that we can achieve more comfortability.

  • PDF

재진입 비행체의 TAEM 구간 최적궤적 설계와 인공신경망을 이용한 제어 (Trajectory Optimization and the Control of a Re-entry Vehicle during TAEM Phase using Artificial Neural Network)

  • 김종훈;이대우;조겸래;민찬오;조성진
    • 한국항공우주학회지
    • /
    • 제37권4호
    • /
    • pp.350-358
    • /
    • 2009
  • 본 논문은 재진입 비행체의 TAEM 구간 유도와 제어에 관하여 기술 하였다. TAEM 구간은 공기의 밀도와 비행체의 속도의 범위가 큰 특징을 가지고 있으며, 이들 조건하에 TAEM 구간의 유도를 위한 궤적과 비행체의 상태값을 최적화하였다. 최적화된 상태값은 7가지의 상태이며, 상태값은 Down-range, Cross-range, 비행체의 고도, 속도, 경로각, 방위각, 그리고 비행 거리이다. 최적화 연산을 수행하기 위하여 DIDO 프로그램을 사용하였다. 재진입 비행체의 제어를 위하여 인공 신경망을 이용한 되먹임 선형화 제어법을 사용하였다. 비행체의 동역학 모델은 역전파 모델을 통하여 근사화 되고, 근사화된 동역학 모델과 지연된 제어 입력, 플랜트 출력으로부터 새로운 제어 입력을 생성하게 된다. 이를 이용하여 본 논문에서는 앞서 최적화된 7가지의 상태값을 추종하는 결과를 보였다.

Computation of aerodynamic coefficients of a re-entry vehicle at Mach 6

  • R.C. Mehta;E. Rathakrishnan
    • Advances in aircraft and spacecraft science
    • /
    • 제10권5호
    • /
    • pp.457-471
    • /
    • 2023
  • The paper evaluates the aerodynamic coefficients on a blunt-nose re-entry capsule with a conical cross-section followed by a cone-flare body. A computer code is developed to solve three-dimensional compressible inviscid equationsfor flow over a Space Recovery Experiment (SRE) configuration at different flare-cone half-angle at Mach 6 and angle of attack up to 5°, at 1° interval. The surface pressure variation is numerically integrated to obtain the aerodynamic forces and pitching moment. The numerical analysis reveals the influence of flare-cone geometry on the flow characteristics and aerodynamic coefficients. The numerical results agree with wind tunnel results. Increase of cone-flare angle from 25° to 35° results in increase of normal force slope, axial forebody drag, base drag and location of centre of pressure by 62.5%, 56.2% and 33.13%, respectively, from the basic configuration ofthe SRE of 25°.