• 제목/요약/키워드: Re(Reynolds number)

검색결과 513건 처리시간 0.026초

와법을 이용한 원주군을 지나는 후류의 특성 계산 (The Characteristic Calculation of the Wake through Cylinders by Vortex Method)

  • 노기덕;오세경;변용수
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제34권1호
    • /
    • pp.76-83
    • /
    • 2010
  • 본 연구는 정렬배열 및 엇갈림배열 상태에 놓인 원주군 주위의 유동장 특성을 와법으로 수치계산한 것이다. 계산은 피치 비 Pt/D=1.25~2.0, 레이놀즈 수 Re=$4.0{\times}10^1{\sim}4.0{\times}10^4$의 범위 내에서 각 유동장의 순간 볼텍스 분포, 순간 속도분포를 계산하였다. 정렬배열 및 엇갈림 배열 모두 각 원주의 상방에서는 시계방향의, 하방에서는 반시계방향의 볼텍스가 발생하였다. 각 배열 모두 원주군 후방에서 역류의 발생여부는 피치 비와 레이놀즈 수에 기인하며, 같은 레이놀즈 수에서는 피치 비가 작을수록, 그리고 같은 피치 비에서는 레이놀즈 수가 클수록 원주군 후방에서 역류발생이 쉽게 일어났다. 그리고 그 경계영역은 정렬배열의 경우 피치 비 Pt/D=1.5, 레이놀즈 수 Re=400~4,000, 엇갈림 배열의 경우 피치 비 Pt/D=1.4, 레이놀즈 수 Re=40~400에 존재했다.

수평채널 내 고 점성유체의 볼텍스 유동에 관한 3차원 수치해석(2) (Three-Dimensional Numerical Study on the Vortex Flow in a Horizontal Channels with High Viscous Fluid(2))

  • 박일용;김정수;배대석
    • 동력기계공학회지
    • /
    • 제19권4호
    • /
    • pp.36-42
    • /
    • 2015
  • TMixed convective flow in a bottom heated and top cooled rectangular channel can be significantly affected by the channel aspect ratio, Prandtl number, Reynolds number, Rayleigh number and angle of inclination. In such a mixed convection, the flow pattern plays an important role in various technological processes. In this study, a numerical investigation is carried out to explore mixed convection in a three-dimensional rectangular channel with bottom heated and top cooled uniformly. The three-dimensional governing equations are discretized using the finite volume method. In the range of low Reynolds number($0{\leq}Re{\leq}9.6{\times}10^{-2}$), the effects of the aspect ratio($2{\leq}AR{\leq}12$) and Gr/Re are presented and discussed. The longitudinal roll number in the channel is increased with increasing aspect ratio, and the roll number induced, regardless of the aspect ratio number, is even in the range of aspect ratios between 2 and 12, New vortex flow structure containing inclined longitudinal rolls is found, which is affected by aspect ratio and Reynolds number. The ratio Gr/Re is used to check the relative magnitudes of forced and natural convection in the mixed convective flow of high viscous fluid.

조도보정 블록 수로에서의 조도계수 추정 (An Estimation of Roughness Coefficient in a Channel with Roughness Correction Blocks)

  • 최흥식;김시훈
    • 대한토목학회논문집
    • /
    • 제34권1호
    • /
    • pp.107-116
    • /
    • 2014
  • 본 연구는 조도보정 블록수로에서의 체적밀집도를 정의하고, 평균유속(V)과 수리반경(R)의 곱인 VR, 블록 Reynolds수($Re^*$), 항력계수($\acute{C}_D$) 및 바닥전단특성의 바닥조도계수($n_b$)를 분석하여 조도계수(n)를 산정하였다. VR과 블록Reynolds수가 증가함에 따라 조도계수가 감소하여 일정함에 수렴하는 경험적인 양상을 확인하였다. 블록Reynolds수의 증가에 따라 항력계수는 감소하여 일정한 값에 수렴하는 것으로 나타났다. 블록Reynolds수가 큰 난류구간에서는 항력계수는 밀집도로 정의한 조도블록의 형상에 지배적임을 볼 수 있다. 정확한 조도계수의 산정을 위해서는 블록Reynolds수와 체적밀집도에 의한 상관식의 개발이 요구된다. n-VR, $\acute{C}_D-Re^*$, $n_b-\acute{C}_D$상관에 대한 관계곡선식을 제시하였다. 조도계수를 산정할 수 있는 블록Reynolds수와 체적밀집도와의 상관관계식을 제시하였다. 실험결과를 토대로 블록Reynolds수와 체적밀집도에 의한 조도 계수 산정식을 이용한 HEC-RAS의 수리특성 분석결과는 실험결과와 잘 일치함을 보여주어 산정한 조도계수 추정식의 적용성을 확인하였다.

Numerical Investigation on Flow Pattern over Backward-Facing Step for Various Step Angles and Reynolds numbers

  • Lee, Jeong Hu;Nguyen, Van Thinh
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2021년도 학술발표회
    • /
    • pp.60-60
    • /
    • 2021
  • Investigating Backward-Facing Step(BFS) flow is important in that it is a representative case for separation flows in various engineering flow systems. There have been a wide range of experimental, theoretical, and numerical studies to investigate the flow characteristics over BFS, such as flow separation, reattachment length and recirculation zone. However, most of such previous studies were concentrated only on the perpendicular step angle. In this study, several numerical investigations on the flow pattern over BFS with various step angles (10° ~ 90°) and expansion ratios (1.48, 2 and 3.27) under different Reynolds numbers (5000 ~ 64000) were carried out, mainly focused on the reattachment length. The numerical simulations were performed using an open source 3D CFD software, OpenFOAM, in which the velocity profiles and turbulence intensities are calculated by RANS (Reynolds Averaged Navier-Stokes equation) and 3D LES (Large Eddy Simulation) turbulence models. Overall, it shows a good agreement between simulations and the experimental data by Ruck and Makiola (1993). In comparison with the results obtained from RANS and 3D LES, it was shown that 3D LES model can capture much better and more details on the velocity profiles, turbulence intensities, and reattachment length behind the step for relatively low Reynolds number(Re < 11000) cases. However, the simulation results by both of RANS and 3D LES showed very good agreement with the experimental data for the high Reynolds number cases(Re > 11000). For Re > 11000, the reattachment length is no longer dependent on the Reynolds number, and it tends to be nearly constant for the step angles larger than 30°.) Based on the calibrated and validated numerical simulations, several additional numerical simulations were also conducted with higher Reynolds number and another expansion ratio which were not considered in the experiments by Ruck and Makiola (1993).

  • PDF

Reynolds number and scale effects on aerodynamic properties of streamlined bridge decks

  • Ma, Tingting;Feng, Chaotian
    • Wind and Structures
    • /
    • 제34권4호
    • /
    • pp.355-369
    • /
    • 2022
  • Section model test, as the most commonly used method to evaluate the aerostatic and aeroelastic performances of long-span bridges, may be carried out under different conditions of incoming wind speed, geometric scale and wind tunnel facilities, which may lead to potential Reynolds number (Re) effect, model scaling effect and wind tunnel scale effect, respectively. The Re effect and scale effect on aerostatic force coefficients and aeroelastic characteristics of streamlined bridge decks were investigated via 1:100 and 1:60 scale section model tests. The influence of auxiliary facilities was further investigated by comparative tests between a bare deck section and the deck section with auxiliary facilities. The force measurement results over a Re region from about 1×105 to 4×105 indicate that the drag coefficients of both deck sections show obvious Re effect, while the pitching moment coefficients have weak Re dependence. The lift coefficients of the smaller scale models have more significant Re effect. Comparative tests of different scale models under the same Re number indicate that the static force coefficients have obvious scale effect, which is even more prominent than the Re effect. Additionally, the scale effect induced by lower model length to wind tunnel height ratio may produce static force coefficients with smaller absolute values, which may be less conservative for structural design. The results with respect to flutter stability indicate that the aerodynamic-damping-related flutter derivatives 𝘈*2 and 𝐴*1𝐻*3 have opposite scale effect, which makes the overall scale effect on critical flutter wind speed greatly weakened. The most significant scale effect on critical flutter wind speed occurs at +3° wind angle of attack, which makes the small-scale section models give conservative predictions.

크기에 따른 스위스 롤 형태 연소기의 성능 변화 (Effects of Size on the Performance of Heat-Recirculating Swiss-roll Combustors)

  • 오화영;김연호;허환일
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2006년도 제33회 KOSCO SYMPOSIUM 논문집
    • /
    • pp.46-49
    • /
    • 2006
  • Extinction limits and combustion temperatures in heat-recirculating excess enthalpy reactors employing both gas-phase and catalytic reaction have been examined previously, with and emphasis Reynolds number (Re) effects and possible application to microscale combustion devices. However, Re is not the only parameter needed to characterize reactor operation. In particular, the use of a fixed reactor size implies that residence time and Re cannot be adjusted independently. To remedy this situation, in this work geometrically similar reactors of different physical sizes were tested with the aim of independently determining the effects of Re and Da. It is found that the difference between catalytic and non-catalytic combustion limits narrow as scale decreases. Moreover, to assess the importance of wall thermal conductivity, reactors of varying wall thickness were studied. From these results the effect of scale on microscale reactor performance and implications for practical microcombustion devices are discussed.

  • PDF

두 개의 원형 실린더를 지나는 유동의 레이놀즈 수 효과 (Reynolds-number Effect on the Flow Past Two Nearby Circular Cylinders)

  • 이경준;최춘범;양경수
    • 대한기계학회논문집B
    • /
    • 제32권1호
    • /
    • pp.30-38
    • /
    • 2008
  • As a follow-up of our previous studies on flow-induced forces on two identical nearby circular cylinders immersed in the cross flow at Re=100 and flow patterns past them,$^{(1,2)}$ we present Reynolds-number effects on the forces and patterns by further computing flows with Re=40, 50, 160. We consider all possible arrangements of the two circular cylinders in terms of the distance between the two cylinders and the angle inclined with respect to the main flow direction. Collecting all the numerical results obtained, we propose contour diagrams for mean force coefficients and their rms of fluctuation as well as for flow patterns and Strouhal number for each Re. These diagrams shed light on a comprehensive picture on how the wake interaction between the two cylinders alters depending on Re.

Effect of Boundary Condition History on the Symmetry Breaking Bifurcation of Wall-Driven Cavity Flows

  • Cho, Ji-Ryong
    • Journal of Mechanical Science and Technology
    • /
    • 제19권11호
    • /
    • pp.2077-2081
    • /
    • 2005
  • A symmetry breaking nonlinear fluid flow in a two-dimensional wall-driven square cavity taking symmetric boundary condition after some transients has been investigated numerically. It has been shown that the symmetry breaking critical Reynolds number is dependent on the time history of the boundary condition. The cavity has at least three stable steady state solutions for Re=300-375, and two stable solutions if Re>400. Also, it has also been showed that a particular solution among several possible solutions can be obtained by a controlled boundary condition.

경사진 평행평판 내 혼합대류 열전달 특성에 관한 수치적 연구 (A Numerical Study on the Characteristic of Mixed Convection Between Inclined Parallel Plates)

  • 박일용;배대석;권오붕
    • 동력기계공학회지
    • /
    • 제10권2호
    • /
    • pp.29-35
    • /
    • 2006
  • Two-dimensional numerical simulation has been performed to investigate mixed convection heat transfer between inclined parallel plates with bottom-heated and top-cooled uniformly. The ratio of parallel plate length to height is 9.33, Prandtl number is 909(that of silicone oil at 298K) and Rayleigh number is 8600. In the ranges of the Reynolds number Re from 0 to 1.8 and the angle of inclination ${\theta}$ from 0 to 90 degree. The governing equations are discretized using the finite volume method. In this study, the effects of the Reynolds number, the angle of inclination, and the local and mean Nusselt numbers are presented and discussed. It is found that the periodic flow of mixed convection between inclined parallel plates is shown at $0^{\circ}{\leq}\;{\theta}<30^{\circ},\;Re<0.063$, and the flow pattern can be classified into three patterns which depend on Reynolds number and the angle of inclination. The minimum average Nusselt numbers occur at Re=0.05 regardless of the angle of inclination.

  • PDF

미세유로의 단상 유동 및 열전달에 대한 실험적 연구 (Experimental Studies on Single Phase Flow and Heat Transfer in Microchannels)

  • 김병주;김건일
    • 설비공학논문집
    • /
    • 제20권12호
    • /
    • pp.795-801
    • /
    • 2008
  • An experimental study has been performed on the single phase flow and convective heat transfer in trapezoidal microchannels. The microchannel was about $270{\mu}m$ wide, $800{\mu}m$ deep. and 7 mm long, which might ensure hydrodynamically fully-developed laminar flow at a low Reynolds number. The experiments were conducted with R1l3 and water, with the Reynolds number ranging from approximately 30 to 5000 for friction factor and 30 to 700 for the Nusselt number. Friction factors in laminar are found to be in good agreement with the predictions of existing correlation suggesting that a conventional analysis approach can be employed in predicting flow friction behavior in microchannels. However turbulent friction factors are hardly predictable by the existing correlations. The experimental results show that the Nusselt number is not a constant but increases almost linearly with the Reynolds number even the flow is fully developed (Re < 100). The dependence of the Nusslet number on the Reynolds number is contradictory to the conventional theory. At a Reynolds number greater than 100, the Nusselt number increases slowly with the Reynolds number, where thennally developing flow is responsible for the increase of the Nusselt number with the Reynolds number.