DOI QR코드

DOI QR Code

조도보정 블록 수로에서의 조도계수 추정

An Estimation of Roughness Coefficient in a Channel with Roughness Correction Blocks

  • 최흥식 (상지대학교 이공대학 건설시스템공학과) ;
  • 김시훈 ((주)정엔지니어링 수자원부)
  • 투고 : 2013.02.14
  • 심사 : 2013.10.16
  • 발행 : 2014.02.01

초록

본 연구는 조도보정 블록수로에서의 체적밀집도를 정의하고, 평균유속(V)과 수리반경(R)의 곱인 VR, 블록 Reynolds수($Re^*$), 항력계수($\acute{C}_D$) 및 바닥전단특성의 바닥조도계수($n_b$)를 분석하여 조도계수(n)를 산정하였다. VR과 블록Reynolds수가 증가함에 따라 조도계수가 감소하여 일정함에 수렴하는 경험적인 양상을 확인하였다. 블록Reynolds수의 증가에 따라 항력계수는 감소하여 일정한 값에 수렴하는 것으로 나타났다. 블록Reynolds수가 큰 난류구간에서는 항력계수는 밀집도로 정의한 조도블록의 형상에 지배적임을 볼 수 있다. 정확한 조도계수의 산정을 위해서는 블록Reynolds수와 체적밀집도에 의한 상관식의 개발이 요구된다. n-VR, $\acute{C}_D-Re^*$, $n_b-\acute{C}_D$상관에 대한 관계곡선식을 제시하였다. 조도계수를 산정할 수 있는 블록Reynolds수와 체적밀집도와의 상관관계식을 제시하였다. 실험결과를 토대로 블록Reynolds수와 체적밀집도에 의한 조도 계수 산정식을 이용한 HEC-RAS의 수리특성 분석결과는 실험결과와 잘 일치함을 보여주어 산정한 조도계수 추정식의 적용성을 확인하였다.

A volume density of roughness correction blocks in a channel is defined and the corresponding roughness coefficient(n) is estimated by analyzing the diverse hydraulic characteristics of VR, the product of the average velocity and the hydraulic radius, block Reynolds number ($Re^*$), drag coefficient ($\acute{C}_D$), and the roughness coefficient ($n_b$) of bottom shear. The increase of VR and block Reynolds number causes the exponential decrease of roughness coefficient converged to a constant value as expected. The drag coefficient also exponentially decreases as block Reynolds number increases as well. The drag force is governed by the block shape defined by volume density in high block Reynolds number of turbulent flow region. For more accurate estimation of roughness coefficient the use of the correlation equation of it is required by block Reynolds number and volume density. The regression equations for n-VR, $\acute{C}_D-Re^*$, and $n_b-\acute{C}_D$ are presented. The regression equations of roughness coefficient are also presented by block Reynolds number and volume density. The developed equation of roughness coefficient by block Reynolds number and volume density has practical use by confirming the coincidence between the experimental results and the results of HEC-RAS using the developed equation.

키워드

참고문헌

  1. Arcement, G. J. and Schneider, V. R. (1989). Guide for selecting manning's roughness coefficients for natural channels and flood plains, USGS, Vol. 2339.
  2. Chow, V. T. (1959). Open-channel hydraulics, McGraw-Hill Book Co., New York, NY.
  3. Cowan, W. L. (1956). "Estimating hydraulic roughness coefficient." Agricultural Engineering, Vol. 37, No. 7, pp. 473-475.
  4. Fathi-Maghadam, M. and Kouwen, N. (1997). "Nonrigid, nonsubmerged, vegetative roughness on floodplains." Journal of Hydraulic Engineering, ASCE, Vol. 123, No. 1, pp. 51-57. https://doi.org/10.1061/(ASCE)0733-9429(1997)123:1(51)
  5. Fenzl, R. N. (1962). Hydraulic resistance of broad shallow vegetated channels, Ph. D. Thesis, University of California, Davis, Calif.
  6. Graf, W. H. and Chhun, V. H. (1976). "Manning's roughness for artificial grasses." Journal of Irrigation and Drainage Division, ASCE, Vol. 102, No. 4, pp. 413-423.
  7. Jarret, R. D. and Petsch, H. E. Jr. (1985). Computer program NCALC user's manual - Verification of manning's roughness coefficient in channels, USGS, Water Resources Investigation, Report, pp. 85-4317.
  8. Kim, J. S., Kim, Y. J., Lee, C. J. and Kim, W. (2009). "Estimation of bed resistance in gravel-bed rivers using the equivalent roughness height." Journal of Korea Water Resources Association, KWRA, Vol. 42, No. 8, pp. 619-629 (in Korean). https://doi.org/10.3741/JKWRA.2009.42.8.619
  9. Kim, J. S., Lee, C. J. and Kim, W. (2007). "Calculation of roughness coefficient in gravel-bed river with observed water levels." Journal of Korea Water Resources Association, KWRA, Vol. 40, No. 10, pp. 755-768 (in Korean). https://doi.org/10.3741/JKWRA.2007.40.10.755
  10. Kim, T. B., Bae, H. D. and Choi, S. U. (2010). "Development and application of depth-integrated 2-D numerical model for the simulation of hydraulic characteristics in vegetated open-channel" Journal of the Korean Society of Civil Engineers, KSCE, Vol. 30, No. 6, pp. 607-615 (in Korean).
  11. Kouwen, N. and Li, R. M. (1980). "Biomechanics of vegetative channel linings." Journal of Hydraulic Division, ASCE, Vol. 106, No. HY6, pp. 1085-1103.
  12. Kouwen, N., Li, R. M. and Simons, D. B. (1981). "Flow resistance in vegetated waterways." Transactions, ASAE, Vol. 24, No. 3, pp. 684-698. https://doi.org/10.13031/2013.34321
  13. Lee, C. J., Kim, J. S., Kim, C. Y. and Kim, D. G. (2008). "Application of slope-area discharge estimation method using continuously observed water level data in a gravel bed river-case study of the dal cheon river." Journal of Korea Water Resources Association, KWRA, Vol. 41, No. 5, pp. 503-515 (in Korean). https://doi.org/10.3741/JKWRA.2008.41.5.503
  14. Lee, D. S., Lee, D. H. and Kim, C. W. (2009). "Evaluation of roughness coefficient following the variations of velocity and stage for phragmites japonica steud." Journal of the Korean Society of Civil Engineers, KSCE, Vol. 24, No. 1B, pp. 23-32 (in Korean).
  15. Lee, J. K. and Lee, C. H. (2004). "Estimation of roughness coefficients in downstream part of the han river using a hydraulic flood routing model." Journal of the Korean Society of Civil Engineers, KSCE, Vol. 24, No. 1B, pp. 23-32 (in Korean).
  16. Lee, S. J. and Park, S. W. (2006)."A study on roughness coefficient estimations in gravel bed stream without water level-discharge data." Journal of Korea Water Resources Association, KWRA, Vol. 39, No. 12, pp. 985-996 (in Korean). https://doi.org/10.3741/JKWRA.2006.39.12.985
  17. Ree, W. O. and Palmer, V. J. (1949). Flow of water in channels protected by vegetative linings, Tech. Bull. No. 967, Soil Conservation Service, U.S. Department of Agriculture, Washington, D.C.
  18. Temple, D. M., Robinson, K. N., Ahring, R. M. and Davis, A. G. (1987). Stability design of grass-lined open channels. Handbook 667, Agricultural. Research. Service, U.S. Department of Agriculture, Washington, D.C.
  19. Wu, F. C., Shen, H. W. and Chou, Y. J. (1999). "Variation of roughness coefficients for unsubmerged and submerged vegetation." Journal of Hydraulic Engineering, ASCE, Vol. 125, No. 9, pp. 934-942. https://doi.org/10.1061/(ASCE)0733-9429(1999)125:9(934)