• 제목/요약/키워드: RdRc

검색결과 219건 처리시간 0.023초

Ginsenosides from Korean Red Ginseng ameliorate lung inflammatory responses: inhibition of the MAPKs/NF-κB/c-Fos pathways

  • Lee, Ju Hee;Min, Dong Suk;Lee, Chan Woo;Song, Kwang Ho;Kim, Yeong Shik;Kim, Hyun Pyo
    • Journal of Ginseng Research
    • /
    • 제42권4호
    • /
    • pp.476-484
    • /
    • 2018
  • Background: Korean Red Ginseng (steamed and dried white ginseng, Panax ginseng Meyer) is well known for enhancing vital energy and immune capacity and for inhibiting cancer cell growth. Some clinical studies also demonstrated a therapeutic potential of ginseng extract for treating lung inflammatory disorders. This study was conducted to establish the therapeutic potential of ginseng saponins on the lung inflammatory response. Methods: From Korean Red Ginseng, 11 ginsenosides (Rb1, Rb2, Rb3, Rc, Rd, Re, Rf, Rg1, Rg2, Rg3, and Rh2) were isolated. Their inhibitory potential and action mechanism were evaluated using a mouse model of lung inflammation, acute lung injury induced by intranasal lipopolysaccharide administration. Their anti-inflammatory activities were also examined in lung epithelial cell line (A549) and alveolar macrophage (MH-S). Results: All ginsenosides orally administered at 20 mg/kg showed 11.5-51.6% reduction of total cell numbers in bronchoalveolar lavage fluid (BALF). Among the ginsenosides, Rc, Re, Rg1, and Rh2 exhibited significant inhibitory action by reducing total cell numbers in the BALF by 34.1-51.6% (n = 5). Particularly, Re showed strong and comparable inhibitory potency with that of dexamethasone, as judged by the number of infiltrated cells and histological observations. Re treatment clearly inhibited the activation of mitogen-activated protein kinases, nuclear factor-${\kappa}B$, and the c-Fos component in the lung tissue (n = 3). Conclusion: Certain ginsenosides inhibit lung inflammatory responses by interrupting these signaling molecules and they are potential therapeutics for inflammatory lung diseases.

Subepithelial connective tissue graft with and without the use of plasma rich in growth factors for treating root exposure

  • Lafzi, Ardeshir;Faramarzi, Masoumeh;Shirmohammadi, Adileh;Behrozian, Ahmad;Kashefimehr, Atabak;Khashabi, Ehsan
    • Journal of Periodontal and Implant Science
    • /
    • 제42권6호
    • /
    • pp.196-203
    • /
    • 2012
  • Purpose: The aim of this study was to evaluate the clinical efficiency of the subepithelial connective tissue graft (SCTG) with and without plasma rich in growth factor (PRGF) in the treatment of gingival recessions. Methods: Twenty bilateral buccal gingival Miller's Class I and II recessions were selected. Ten of the recessions were treated with SCTG and PRGF (test group). The rest ten of the recessions were treated with SCTG (control group). The clinical parameters including recession depth (RD), percentage of root coverage (RC), mucogingival junction (MGJ) position, clinical attachment level (CAL), and probing depth (PD) were measured at the baseline, and 1 and 3 months later. The data were analyzed using the Wilcoxon signed rank and Mann-Whitney U tests. Results: After 3 months, both groups showed a significant improvement in all of the mentioned criteria except PD. Although the amount of improvement was better in the SCTG+PRGF group than the SCTG only group, this difference was not statistically significant. The mean RC was $70.85{\pm}12.57$ in the test group and $75.83{\pm}24.68$ in the control group. Conclusions: Both SCTG+PRGF and SCTG only result in favorable clinical outcomes, but the added benefit of PRGF is not evident.

Comparative Study of White and Steamed Black Panax ginseng, P. quinquefolium, and P. notoginseng on Cholinesterase Inhibitory and Antioxidative Activity

  • Lee, Mi-Ra;Yun, Beom-Sik;Sung, Chang-Keun
    • Journal of Ginseng Research
    • /
    • 제36권1호
    • /
    • pp.93-101
    • /
    • 2012
  • This study evaluated the anti-cholinesterases (ChEs) and antioxidant activities of white ginseng (WG) and black ginseng (BG) roots of Panax ginseng (PG), P. quinquefolium (PQ), and P. notoginseng (PN). Ginsenosides $Rg_1$, Re, Rf, $Rb_1$, Rc, $Rb_2$, and Rd were found in white PG, whereas Rf was not found in white PQ and Rf, Rc, and $Rb_2$ were not detected in white PN. The major ginsenoside content in steamed BG including $RK_3$, $Rh_4$, and 20(S)/(R)-$Rg_3$ was equivalent to approximately 70% of the total ginsenoside content. The WG and BG inhibited acetylcholinesteras (AChE) and butyrylcholinesterase (BChE) in a dose dependent manner. The efficacy of BG roots of PG, PQ, and PN on AChE and BChE inhibition was greater than that of the respective WG roots. The total phenolic contents and 2, 2-diphenyl-1-picryl-hydrazyl (DPPH) scavenging activity were increased by heat treatment. Among the three WG and BG, white PG and steamed black PQ have significantly higher contents of phenolic compounds. The best results for the DPPH scavenging activity were obtained with the WG and BG from PG. These results demonstrate that the steamed BG roots of the three studied ginseng species have both high ChEs inhibition capacity and antioxidant activity.

Comparing eight types of ginsenosides in ginseng of different plant ages and regions using RRLC-Q-TOF MS/MS

  • Dai, Yu-Lin;Qiao, Meng-Dan;Yu, Peng;Zheng, Fei;Yue, Hao;Liu, Shu-Ying
    • Journal of Ginseng Research
    • /
    • 제44권2호
    • /
    • pp.205-214
    • /
    • 2020
  • Background: This article aims to compare and analyze the contents of ginsenosides in ginseng of different plant ages from different localities in China. Methods: In this study, 77 fresh ginseng samples aged 2-4 years were collected from 13 different cultivation regions in China. The content of eight ginsenosides (Rg3, Rc, Rg1, Rf, Rb2, Rb1, Re, and Rd) was determined using rapid resolution liquid chromatography coupled with quadrupole-time-of-flight tandem mass spectrometry (RRLC-Q-TOF MS/MS) to comparatively evaluate the influences of cultivation region and age. Results: Ginsenoside contents differed significantly depending on age and cultivation region. The contents of ginsenosides Re, Rc, Rg1, Rg3, and Rf increased with cultivation age, whereas that of ginsenoside Rb1 peaked in the third year of cultivation. Moreover, the highest ginsenoside content was obtained from Changbai (19.36 mg/g) whereas the lowest content was obtained from Jidong (12.05 mg/g). Ginseng from Jilin Province contained greater total ginsenosides and was richer in ginsenoside Re than ginseng of the same age group in Heilongjiang and Liaoning provinces, where Rb1 and Rg1 contents were relatively high. Conclusion: In this study, RRLC-Q-TOF MS/MS was used to analyze ginsenoside contents in 77 ginseng samples aged 2-4 years from different cultivation regions. These patterns of variation in ginsenoside content, which depend on harvesting location and age, could be useful for interested parties to choose ginseng products according to their needs.

인삼의 구증구포에 의한 Ginsenoside의 성분변화 및 BACE-1 억제효과 (Conversion of Ginsenosides by 9 Repetitive Steamings and Dryings Process of Korean Ginseng Root and Its Inhibition of BACE-1 Activity)

  • 김도완;김유진;이연진;민진우;김세영;양덕춘
    • 동의생리병리학회지
    • /
    • 제22권6호
    • /
    • pp.1557-1561
    • /
    • 2008
  • Red ginseng possibly has new ingredients converted during steaming and dry process from fresh ginseng. Kujeungkupo method which means 9 repetitive steamings and dryings process was used for the production of red ginseng from 6-year old ginseng roots. Saponin was extracted from each red ginseng produced at the 1st, 3rd, 5th, 7th, and 9th during the steaming and drying treatment, and we analyzed saponin content with TLC. Minor saponins, such as ginsenoside-Rg3, -Rh2, compound K, and F2, increased as the process time of steaming and drying, but major saponins (ginsenoside-Rb1, -Rb2, -Rc, -Rd, -Re, -Rf, -Rg1) were decreased. Major saponins were yet observed almost at the 1st process, then degraded as the increasing time of steaming and drying process. Especially, ginsenoside-Re and -Rg were observed as considerable amount after the 1st treatment, but there were no trace of them after the 9th treatment. Ginsenoside-Rg1, -Rb2, and -Rb1 were also reduced remarkedly by 96.6%, 96%, and 92.3%, respectively. Minor saponins were increased significantly, especially for ginsenoside-Rg3 and ginsenoside-F2. These results suggest that Kujeungkupo method is the very useful method for the production of minor ginsenoside-Rg3 and -Rh2.

Effects of Ginsenosides Injected Intrathecally or Intracerebroventricularly on Antinociception Induced by D-$Pen^{2,5}$-enkephalin Administered Intracerebroventricularly in the Mouse

  • Hong-Won Suh;Don
    • Journal of Ginseng Research
    • /
    • 제21권2호
    • /
    • pp.109-114
    • /
    • 1997
  • The effect of total saponin fraction of Ginseng injected intrathecally (i.1.) or in- tracerebroventricularly (i.c.v.) on the antinociception induced by D-$Pen^{2,5}$- enkephalin (DPDPE) ad ministered i.c.v. was studied in ICR mice in the present study. The antinociception was assessed by the tail-flick test. Total saponin fraction at doses 0.1 to 1.0 $\mu\textrm{g}$, which administered i.t. Alone did not affect the latencies of tail-flick threshold, attenuated dose-dependently the inhibition of the tail-flick response induced by i.c.v. administered DPDPE (10 $\mu\textrm{g}$). However, total saponin fraction at doses 1 to 20 $\mu\textrm{g}$, which administered i.c.v. Alone did not affect the latencies of the tail-flick response, did not affect i.c.v. administered DPDPE (10 $\mu\textrm{g}$)-induced antinociception. The duration of antagonistic action of total saponin fraction against DPDPE-induced antlnociception was lasted at least for 6 hrs. Various doses of ginsenosides Rd, but not $\Rb_2$, Rc, Rg1, and $\Rb_1$ and Re, injected i.t. Dose-dependently attenuated antinociception induced by DPDPE administered i.c.v. Our results indicate that total saponin fraction injected spinally appears to have antagonistic action against the antinociception induced by supraspinally applied DPDPE. Ginsenoside Rd appears to be responsible for blocking j.c.v. administered DPDPE-induced antinociception. On the other hand, total ginseng fraction, at supraspinal sites, may not have an antagonistic action against the antinociception induced by DPDPE.

  • PDF

Enzymatic formation of compound-K from ginsenoside Rb1 by enzyme preparation from cultured mycelia of Armillaria mellea

  • Upadhyaya, Jitendra;Kim, Min-Ji;Kim, Young-Hoi;Ko, Sung-Ryong;Park, Hee-Won;Kim, Myung-Kon
    • Journal of Ginseng Research
    • /
    • 제40권2호
    • /
    • pp.105-112
    • /
    • 2016
  • Background: Minor saponins or human intestinal bacterial metabolites, such as ginsenosides Rg3, F2, Rh2, and compound K, are more pharmacologically active than major saponins, such as ginsenosides Rb1, Rb2, and Rc. In this work, enzymatic hydrolysis of ginsenoside Rb1 was studied using enzyme preparations from cultured mycelia of mushrooms. Methods: Mycelia of Armillaria mellea, Ganoderma lucidum, Phellinus linteus, Elfvingia applanata, and Pleurotus ostreatus were cultivated in liquid media at $25^{\circ}C$ for 2 wk. Enzyme preparations from cultured mycelia of five mushrooms were obtained by mycelia separation from cultured broth, enzyme extraction, ammonium sulfate (30-80%) precipitation, dialysis, and freeze drying, respectively. The enzyme preparations were used for enzymatic hydrolysis of ginsenoside Rb1. Results: Among the mushrooms used in this study, the enzyme preparation from cultured mycelia of A. mellea (AMMEP) was found to convert ginsenoside Rb1 into compound K with a high yield, while those from G. lucidum, P. linteus, E. applanata, and P. ostreatus produced remarkable amounts of ginsenoside Rd from ginsenoside Rb1. The enzymatic hydrolysis pathway of ginsenoside Rb1 by AMMEP was $Rb1{\rightarrow}Rd{\rightarrow}F2{\rightarrow}$ compound K. The optimum reaction conditions for compound K formation from ginsenoside Rb1 were as follows: reaction time 72-96 h, pH 4.0-4.5, and temperature $45-55^{\circ}C$. Conclusion: AMMEP can be used to produce the human intestinal bacterial metabolite, compound K, from ginsenoside Rb1 with a high yield and without food safety issues.

Ascorbic acid 및 citric acid 처리에 따른 홍삼추출물의 페놀성 성분 및 ginsenoside 함량 변화 (Variation of Phenolic Ingredient and Ginsenoside Content in Red ginseng Extract by Acid Treatment)

  • 공연희;노정해;조장원;김미현;이영철;김성수;이평재;최상윤
    • Journal of Ginseng Research
    • /
    • 제33권3호
    • /
    • pp.194-198
    • /
    • 2009
  • 본 연구에서는 수삼을 식품에 쓰이는 산화 방지제인 ascorbic acid와 citric acid로 처리하여 홍삼을 제조한 후 활성성분인 페놀화합물과 진세노사이드의 추출물내 함량 변화를 HPLC를 이용하여 살펴보았다. 분석결과 citric acid 처리 홍삼에서 esculetin과 quercetin 함량이 무처리 홍삼에 비하여 각각 3.5 배, 2.0 배 증가하였고 ginsenoside 함량 역시 citric acid 처리시의 Rg$_3$, Rd, Rh$_2$ 증가량이 ascobic acid 처리시에 비하여 높았다. 따라서 인삼추출물의 이들 특정활성성분 강화를 위하여는 citric acid 처리가 효과적인 것으로 판단된다.

The influence of different factors on buildings' height in the absence of shear walls in low seismic regions

  • Keihani, Reza;Bahadori-Jahromi, Ali;Goodchild, Charles;Cashell, Katherine A.
    • Structural Engineering and Mechanics
    • /
    • 제76권1호
    • /
    • pp.83-99
    • /
    • 2020
  • Shear walls are structural members in buildings that are used extensively in reinforced concrete frame buildings, and almost exclusively in the UK, regardless of whether or not they are actually required. In recent years, the UK construction industry, led by the Concrete Centre, has questioned the need for such structural elements in low to mid-rise reinforced concrete frame buildings. In this context, a typical modern, 5-storey residential building is studied, and its existing shear walls are replaced with columns as used elsewhere in the building. The aim is to investigate the impact of several design variables, including concrete grade, column size, column shape and slab thickness, on the building's structural performance, considering two punching shear limits (VEd/VRd,c), lateral drift and accelerations, to evaluate its maximum possible height under wind actions without the inclusion of shear walls. To facilitate this study, a numerical model has been developed using the ETABS software. The results demonstrate that the building examined does not require shear walls in the design and has no lateral displacement or acceleration issues. In fact, with further analysis, it is shown that a similar building could be constructed up to 13 and 16 storeys high for 2 and 2.5 punching shear ratios (VEd/VRd,c), respectively, with adequate serviceability and strength, without the need for shear walls, albeit with thicker columns.

Diol-ginsenosides from Korean Red Ginseng delay the development of type 1 diabetes in diabetes-prone biobreeding rats

  • Ju, Chung;Jeon, Sang-Min;Jun, Hee-Sook;Moon, Chang-Kiu
    • Journal of Ginseng Research
    • /
    • 제44권4호
    • /
    • pp.619-626
    • /
    • 2020
  • Background: The effects of diol-ginsenoside fraction (Diol-GF) and triol-ginsenoside fraction (Triol-GF) from Korean Red Ginseng on the development of type 1 diabetes (T1D) were examined in diabetes-prone biobreeding (DP-BB) rats that spontaneously develop T1D through an autoimmune process. Methods: DP-BB female rats were treated with Diol-GF or Triol-GF daily from the age of 3-4 weeks up to 11-12 weeks (1 mg/g body weight). Results: Diol-GF delayed the onset, and reduced the incidence, of T1D. Islets of Diol-GF-treated DP-BB rats showed significantly lower insulitis and preserved higher plasma and pancreatic insulin levels. Diol-GF failed to change the proportion of lymphocyte subsets such as T cells, natural killer cells, and macrophages in the spleen and blood. Diol-GF had no effect on the ability of DP-BB rat splenocytes to induce diabetes in recipients. Diol-GF and diol-ginsenoside Rb1 significantly decreased tumor necrosis factor α production, whereas diol-ginsenosides Rb1 and Rd decreased interleukin 1β production in RAW264.7 cells. Furthermore, mixed cytokine- and chemical-induced β-cell cytotoxicity was greatly inhibited by Diol-GF and diol-ginsenosides Rc and Rd in RIN5mF cells. However, nitric oxide production in RAW264.7 cells was unaffected by diol-ginsenosides. Conclusion: Diol-GF, but not Triol-GF, significantly delayed the development of insulitis and T1D in DP-BB rats. The antidiabetogenic action of Diol-GF may result from the decrease in cytokine production and increase in β-cell resistance to cytokine/free radical-induced cytotoxicity.