• 제목/요약/키워드: Rb

검색결과 1,568건 처리시간 0.04초

Three Crystal Structures of Dehydrated $Cd^{2+}$ and $Rb^+$ Exchanged Zeolite A, $Cd_xRb_{12-2x}-A,$ x=4.0, 5.0 and 5.95

  • Song, Yeong-Sim;Kim, Un-Sik;Kim, Yang;Kim, Duk-Soo
    • Bulletin of the Korean Chemical Society
    • /
    • 제11권4호
    • /
    • pp.328-331
    • /
    • 1990
  • Three crystal structures of dehydrated Cd(II) and Rb(I) exchanged zeolite A, $Cd_{4.0}Rb_{4.0}-A (a = 12.204(3) {\AA}), Cd_{5.0}Rb_{2.0}-A (a = 12.202(1) {\AA}),$ and $Cd_{5.95}Rb_{0.1}-A (a = 12.250(2) {\AA}),$ have been determined by single-crystal X-ray diffraction techniques. Their structures were solved and refined in the cubic space group Pm3m at $21(1)^{\circ}C.$ All crystals were ion exchanged in flowing streams of mixed $Cd(NO_3)_2·4H_2O$ and $RbNO_3$ aqueous solution with total concentration of 0.05 M. All crystals were dehydrated at ca. $450^{\circ}C$ and $2×10^{-6}$ Torr for 2 days. In all of these structures, $Cd^{2+}$ ions are found on threefold axes, each nearly at the center of a 6-oxygen ring. The first three $Rb^+$ ions per unit cell preferentially associate with 8-oxygen rings, and additional $Rb^+$ ions, if present, are found on threefold axes in the large cavity. The final $R_1$ and $R_2$ values for the three structures are 0.087 and 0.079, 0.059 and 0.067, and 0.079 and 0.095, respectively.

재조합 Bovine Somatotropin 250 mg 제제의 투여가 젖소의 산유량 및 건강에 미치는 영향 (Effects of Boostin-250 Supplementation on Milk Production and Health of Dairy Cows)

  • 김요한;김두
    • 한국임상수의학회지
    • /
    • 제29권3호
    • /
    • pp.213-219
    • /
    • 2012
  • 재조합 bST(recombinant bovine somatotropin; rbST)는 젖소에서 건강에 부작용을 초래하지 않으면서 유생산을 증가시키는 것으로 알려졌다. 본 연구는 250 mg의 rbST를 함유한 $Boostin^{(R)}$-250 제제와 rbST를 500 mg 함유하는 $Posilac^{(R)}$ 제제와 $Boostin^{(R)}$-S 제제의 투여시 유생산에 미치는 영향과 대상동물에 대한 rbST 투여의 안전성을 비교하기 위하여 실시하였다. 젖소는 1군에서 4군까지 각각 25마리씩 임의배치하였다. $Boostin^{(R)}$-250 제제와 부형제(대조군)를 매주 투여하였으며 $Boostin^{(R)}$-S 제제와 $Posilac^{(R)}$제제는 2주 간격으로 투여하였다. 젖소의 유량, 유성분, 체세포수, 건강상태, body condition score (BCS)를 측정하였다. $Posilac^{(R)}$제제, $Boostin^{(R)}$-S 제제, $Boostin^{(R)}$-250 제제의 투여에 따른 유생산 증가는 대조군과 비교하여 각각 2.9 kg/day (12.3%), 4.2 kg/day (17.9%), 4.1 kg/day (17.4%)이었으며 rbST를 투여한 군들과 대조군 사이에서 통계적 유의차가 확인되었다. rbST의 투여는 임상형 유방염발생과 우유의 체세포수를 증가시키지 않았으며 rbST의 투여는 유성분에도 큰 영향을 미치지 않았다. 최고유량 이후 rbST의 투여는 BCS에 부정적인 영향을 미치지 않았지만 비유 100일 이내의 일부 젖소들은 rbST의 투여 후 BCS가 감소하였다. 결론적으로 rbST 250 mg의 매주 투여는 rbST 500 mg의 2주 간격 투여와 유사한 우유 증산효과를 나타내었으며 젖소의 대사성 스트레스를 감소시키는 것으로 판단되었다.

Inhibitory Effects of Ginsenoside-Rb2 on Nicotinic Stimulation-Evoked Catecholamine Secretion

  • Lim, Hyo-Jeong;Lee, Hyun-Young;Lim, Dong-Yoon
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제18권5호
    • /
    • pp.431-439
    • /
    • 2014
  • The aim of the present study was to investigate whether ginsenoside-Rb2 (Rb2) can affect the secretion of catecholamines (CA) in the perfused model of the rat adrenal medulla. Rb2 ($3{\sim}30{\mu}M$), perfused into an adrenal vein for 90 min, inhibited ACh (5.32 mM)-evoked CA secretory response in a dose- and time-dependent fashion. Rb2 ($10{\mu}M$) also time-dependently inhibited the CA secretion evoked by DMPP ($100{\mu}M$, a selective neuronal nicotinic receptor agonist) and high $K^+$ (56 mM, a direct membrane depolarizer). Rb2 itself did not affect basal CA secretion (data not shown). Also, in the presence of Rb2 ($50{\mu}g/mL$), the secretory responses of CA evoked by veratridine (a selective $Na^+$ channel activator ($50{\mu}M$), Bay-K-8644 (an L-type dihydropyridine $Ca^{2+}$ channel activator, $10{\mu}M$), and cyclopiazonic acid (a cytoplasmic $Ca^{2+}$-ATPase inhibitor, $10{\mu}M$) were significantly reduced, respectively. Interestingly, in the simultaneous presence of Rb2 ($10{\mu}M$) and L-NAME (an inhibitor of NO synthase, $30{\mu}M$), the inhibitory responses of Rb2 on ACh-evoked CA secretory response was considerably recovered to the extent of the corresponding control secretion compared with the inhibitory effect of Rb2-treatment alone. Practically, the level of NO released from adrenal medulla after the treatment of Rb2 ($10{\mu}M$) was greatly elevated compared to the corresponding basal released level. Collectively, these results demonstrate that Rb2 inhibits the CA secretory responses evoked by nicotinic stimulation as well as by direct membrane-depolarization from the isolated perfused rat adrenal medulla. It seems that this inhibitory effect of Rb2 is mediated by inhibiting both the influx of $Ca^{2+}$ and $Na^+$ into the adrenomedullary chromaffin cells and also by suppressing the release of $Ca^{2+}$ from the cytoplasmic calcium store, at least partly through the increased NO production due to the activation of nitric oxide synthase, which is relevant to neuronal nicotinic receptor blockade.

Relationship of Early Lactation and Bovine Somatotropin to Water Metabolism and Mammary Circulation of Crossbred Holstein Cattle

  • Maksiri, W.;Chanpongsang, S.;Chaiyabutr, N.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제18권11호
    • /
    • pp.1600-1608
    • /
    • 2005
  • The study was carried out to evaluate the effect of exogenous bovine somatotropin on water metabolism in relation to mammary function in early lactation of crossbred Holstein cattle. Ten, 87.5% crossbred Holstein cattle were divided into two groups of 5 animals each. At day 60 of lactation, the control group was given placebo while animals in the experimental group were given recombinant bovine somatotropin (rbST) by subcutaneous injection with 500 mg of rbST (14-days prolonged-release rbST). In rbSTtreated animals, milk yield increased 19.8%, which coincided with a significant increase in water intake (p<0.01), while DM daily intake was not different when compared to the control animals. Water turnover rate as absolute values significantly increased (p<0.05), while the biological half-life of water did not change in rbST-treated animals. Total body water (TBW) and total body water space (TOH) as absolute values significantly increased (p<0.01) in rbST-treated animals, while it was decreased in the control animals. Absolute values of empty body water (EBW) markedly increased (p<0.05), which was associated with an increase in the extracellular fluid (ECF) volume. Absolute values of plasma volume and blood volume were also significantly increased (p<0.05) in rbST-treated animals. The increase in mammary blood flow in rbST-treated animals was proportionally higher than an increase in milk production. The plasma IGF-1 concentration was significantly increased (p<0.01) in rbST-treated animals when compared with those of control animals during the treatment period. Milk fat concentration increased during rbST treatment, while the concentrations of both protein and lactose in milk were not affected. The present results indicate that rbST exerts its effect on an increase in both TBW and EBW. An increased ECF compartment in rbST-treated animals might partly result from the decrease in fat mass during early lactation. The action of rbST on mammary blood flow might not be mediated solely by the action of IGF-1 for increase in blood flow to mammary gland. An elevation of body fluid during rbST treatment in early lactation may be partly a result of an increase in mammary blood flow in distribution of milk precursors to the gland.

진세노사이드 Rb1과 Rg1에 의한 HaCaT 피부각질세포의 전사체 분석 (Transcriptome Analysis of Human HaCaT Keratinicytes by Ginsenosides Rb1 and Rg1)

  • 김정민;조원준;윤희승;방인석
    • 한국산학기술학회논문지
    • /
    • 제15권11호
    • /
    • pp.6774-6781
    • /
    • 2014
  • 인삼(Panax ginseng C. A. Meyer)의 주요 생리활성물질인 진세노사이드(ginsenoside) Rb1과 Rg1의 효능검증 및 작용점을 규명하고자 HaCaT 피부각질세포에서 유전체 분석(gene expression profiles)을 실시하였다. 진세노사이드 Rb1과 Rg1 각각의 처리 농도 및 시간에 따른 HaCaT 세포에 대한 세포독성은 나타나지 않았으며, $10{\mu}g/mL$의 진세노사이드 Rb1과 Rg1 각각을 6 및 24 시간 처리하여 유전체 분석 결과, 진세노사이드 Rb1과 Rg1의 24 시간 처리군에서 항노화 및 피부탄력 관련 유전자인 fibroblast growth factor (FGF2)의 활성이 증가된 것으로 나타났다. 또한 진세노사이드 Rb1의 24 시간 처리군에서는 항산화 작용점에 있는 일련의 유전자군, FANCD2, FGF2, LEPR, FAS 등의 활성을 확인하였다. 향후 확인된 항노화 및 피부탄력 관련 주요인자들의 작용 및 상관관계를 구체적으로 확인하고, 특히 진세노사이드 Rb1의 신호전달을 완성하고자 한다.

Ginsenoside Rb1 exerts neuroprotective effects through regulation of Lactobacillus helveticus abundance and GABAA receptor expression

  • Chen, Huimin;Shen, Jiajia;Li, Haofeng;Zheng, Xiao;Kang, Dian;Xu, Yangfan;Chen, Chong;Guo, Huimin;Xie, Lin;Wang, Guangji;Liang, Yan
    • Journal of Ginseng Research
    • /
    • 제44권1호
    • /
    • pp.86-95
    • /
    • 2020
  • Background: Ginsenoside Rb1 (Rb1), one of the most abundant protopanaxadiol-type ginsenosides, exerts excellent neuroprotective effects even though it has low intracephalic exposure. Purpose: The present study aimed to elucidate the apparent contradiction between the pharmacokinetics and pharmacodynamics of Rb1 by studying the mechanisms underlying neuroprotective effects of Rb1 based on regulation of microflora. Methods: A pseudo germ-free (PGF) rat model was established, and neuroprotective effects of Rb1 were compared between conventional and PGF rats. The relative abundances of common probiotics were quantified to reveal the authentic probiotics that dominate in the neuroprotection of Rb1. The expressions of the gamma-aminobutyric acid (GABA) receptors, including GABAA receptors (α2, β2, and γ2) and GABAB receptors (1b and 2), in the normal, ischemia/reperfusion (I/R), and I/R+Rb1 rat hippocampus and striatum were assessed to reveal the neuroprotective mechanism of Rb1. Results: The results showed that microbiota plays a key role in neuroprotection of Rb1. The relative abundance of Lactobacillus helveticus (Lac.H) increased 15.26 fold after pretreatment with Rb1. I/R surgery induced effects on infarct size, neurological deficit score, and proinflammatory cytokines (IL-1β, IL-6, and TNF-α) were prevented by colonizing the rat gastrointestinal tract with Lac.H (1 × 109 CFU) by gavage 15 d before I/R surgery. Both Rb1 and Lac.H upregulated expression of GABA receptors in I/R rats. Coadministration of a GABAA receptor antagonist significantly attenuated neuroprotective effects of Rb1 and Lac.H. Conclusion: In sum, Rb1 exerts neuroprotective effects by regulating Lac.H and GABA receptors rather than through direct distribution to the target sites.

Ginsenoside Rb2 suppresses cellular senescence of human dermal fibroblasts by inducing autophagy

  • Kyeong Eun Yang;Soo-Bin Nam;Minsu Jang;Junsoo Park;Ga-Eun Lee;Yong-Yeon Cho;Byeong-Churl Jang;Cheol-Jung Lee;Jong-Soon Choi
    • Journal of Ginseng Research
    • /
    • 제47권2호
    • /
    • pp.337-346
    • /
    • 2023
  • Background: Ginsenoside Rb2, a major active component of Panax ginseng, has various physiological activities, including anticancer and anti-inflammatory effects. However, the mechanisms underlying the rejuvenation effect of Rb2 in human skin cells have not been elucidated. Methods: We performed a senescence-associated β-galactosidase staining assay to confirm cellular senescence in human dermal fibroblasts (HDFs). The regulatory effects of Rb2 on autophagy were evaluated by analyzing the expression of autophagy marker proteins, such as microtubule-associated protein 1A/1B-light chain (LC) 3 and p62, using immunoblotting. Autophagosome and autolysosome formation was monitored using transmission electron microscopy. Autophagic flux was analyzed using tandem-labeled GFP-RFP-LC3, and lysosomal function was assessed with Lysotracker. We performed RNA sequencing to identify potential target genes related to HDF rejuvenation mediated by Rb2. To verify the functions of the target genes, we silenced them using shRNAs. Results: Rb2 decreased β-galactosidase activity and altered the expression of cell cycle regulatory proteins in senescent HDFs. Rb2 markedly induced the conversion of LC3-I to LC3-II and LC3 puncta. Moreover, Rb2 increased lysosomal function and red puncta in tandem-labeled GFP-RFP-LC3, which indicate that Rb2 promoted autophagic flux. RNA sequencing data showed that the expression of DNA damage-regulated autophagy modulator 2 (DRAM2) was induced by Rb2. In autophagy signaling, Rb2 activated the AMPK-ULK1 pathway and inactivated mTOR. DRAM2 knockdown inhibited autophagy and Rb2-restored cellular senescence. Conclusion: Rb2 reverses cellular senescence by activating autophagy via the AMPK-mTOR pathway and induction of DRAM2, suggesting that Rb2 might have potential value as an antiaging agent.

Tissue Microarray Immunohistochemical Profiles of p53 and pRB in Hepatocellular Carcinoma and Hepatoblastoma

  • Azlin, Abdul Hadi;Looi, Lai Meng;Cheah, Phaik Leng
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제15권9호
    • /
    • pp.3959-3963
    • /
    • 2014
  • The tumour suppressor genes, p53 and pRb, are known to play important roles in neoplastic transformation. While molecular routes to the uncontrolled growth of hepatocytes, leading to primary liver cancer have generated considerable interest, the roles of p53 and pRb mutations in hepatocellular carcinoma (HCC) and hepatoblastoma (HB) remain to be clarified. We examined the immunohistochemical expression of p53 and pRb gene products in 26 HCC and 9 HB, sampled into tissue microarray blocks. 10 (38%) of 26 HCC showed > 10% tumour nuclear staining for p53 protein, 3 of these also being HbsAg positive. Conversely, none of 9 HB expressed nuclear p53 immunopositivity. Some 24 (92%) HCC and 8 (89%) HB showed loss of pRb nuclear expression. Two of the 26 HCC and one of the 9 HB showed >10% tumour nuclear staining for pRb protein. Our results suggest that p53 does not have an important role in the development of HB but may contribute in HCC. There is also loss of pRb expression in the majority of HCC and HB, supporting loss of pRb gene function in the hepatocarcinogenesis pathway. However, a comparison of the staining profiles of p53 and pRb proteins in HCC and HB did not reveal a consistent pattern to differentiate between the two types of tumours immunohistochemically. Hence the use of p53 and pRB protein expression has no contribution in the situation where there is a diagnostic difficulty in deciding between HCC and HB.

The Ginsenoside-Rb2 lowers cholesterol and triacylglycerol levels in 3T3-L1 adipocytes cultured under high cholesterol or fatty acids conditions

  • Kim, Eun-Ju;Lee, Hyun-Il;Chung, Kyung-Jin;Noh, Yun-Hee;Ro, Young-Tae;Koo, Ja-Hyun
    • BMB Reports
    • /
    • 제42권4호
    • /
    • pp.194-199
    • /
    • 2009
  • The effects of the ginsenoside Rb2 (Rb2) on lipid metabolism were characterized in 3T3-L1 adipocytes to evaluate their utility for treating obesity. While the amounts of total cholesterol and triacylglycerol (TAG) were markedly increased in the adipocytes treated with high amounts of cholesterol and fetal bovine serum (FBS), the test groups treated with Rb2 showed levels that were close to normal. The effect of Rb2 on these cells was comparable to that of lovastatin. Rb2 enhanced the expression of the sterol regulated element binding protein (SREBP) mRNA whereas treatment with cholesterol and FBS led to a reduction in the abundance of this transcript. The activity of fatty acid synthetase (FAS) was lower in the cholesterol group compared to the Rb2 treatment group suggesting that the observed decrease in cholesterol levels and activated SREBP was mediated by Rb2. Treatment with Rb2 also resulted in a decrease in TAG levels in adipocytes cultured under high fatty acid conditions. This effect was mediated by stimulating the expression of SREBP and Leptin mRNA, suggesting that Rb2 might be a valuable component capable of lowering the levels of lipids.

Novel enzymatic elimination method for the chromatographic purification of ginsenoside Rb3 in an isomeric mixture

  • Cui, Chang-Hao;Fu, Yaoyao;Jeon, Byeong-Min;Kim, Sun-Chang;Im, Wan-Taek
    • Journal of Ginseng Research
    • /
    • 제44권6호
    • /
    • pp.784-789
    • /
    • 2020
  • Background: The separation of isomeric compounds from a mixture is a recurring problem in chemistry and phytochemistry research. The purification of pharmacologically active ginsenoside Rb3 from ginseng extracts is limited by the co-existence of its isomer Rb2. The aim of the present study was to develop an enzymatic elimination-combined purification method to obtain pure Rb3 from a mixture of isomers. Methods: To isolate Rb3 from the isomeric mixture, a simple enzymatic selective elimination method was used. A ginsenoside-transforming glycoside hydrolase (Bgp2) was employed to selectively hydrolyze Rb2 into ginsenoside Rd. Ginsenoside Rb3 was then efficiently separated from the mixture using a traditional chromatographic method. Results: Chromatographic purification of Rb3 was achieved using this novel enzymatic elimination-combined method, with 58.6-times higher yield and 13.1% less time than those of the traditional chromatographic method, with a lower minimum column length for purification. The novelty of this study was the use of a recombinant glycosidase for the selective elimination of the isomer. The isolated ginsenoside Rb3 can be used in further pharmaceutical studies. Conclusions: Herein, we demonstrated a novel enzymatic elimination-combined purification method for the chromatographic purification of ginsenoside Rb3. This method can also be applied to purify other isomeric glycoconjugates in mixtures.