• Title/Summary/Keyword: Rayleigh number

Search Result 434, Processing Time 0.022 seconds

Natural Convection in Tilted Square Enclosure with Inner Circular Cylinder at Different Vertical Locations (내부 원형 실린더의 위치 변화에 따른 기울어진 사각 밀폐계 내부의 자연대류 현상)

  • Jeong, Seung Jae;Yoon, Hyun Sik;Choi, Changyoung;Ha, Man Young
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.37 no.12
    • /
    • pp.1113-1120
    • /
    • 2013
  • A numerical analysis of the effect of the position of a circular cylinder in a $45^{\circ}$ tilted enclosure on natural convection in the enclosure is presented. The location of the cylinder is changed between -0.4 and 0.4. The Rayleigh number is varied between $10^3$ and $10^5$. The effect of the location of the cylinder on natural convection in the enclosure is analyzed by the isothermal line, stream line, and surface-averaged Nusselt number. The flow and heat transfer characteristics are independent of time in the range of the Rayleigh number and cylinder location that is considered in this study. The surface-averaged Nusselt number of the cylinder and enclosure increases as the cylinder gets closer to the wall of the enclosure.

Application of Holographic Interferometry and 2-D PIV for HSC Convective Flow Diagnostics (Hele-Shaw Cell 내부의 열유동 해석을 위한 홀로그래픽 간섭계와 2차원 PIV의 적용)

  • Kim, Seok;Lee, Sang-Joon
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.682-687
    • /
    • 2003
  • The variations of temperature and velocity fields in a Hele-Shaw convection cell (HSC) were investigated using a holographic interferometry and 2-D PIV system with varying Rayleigh number. To measure quasisteady changes of temperature field, two different measurement methods of holographic interferometry; double-exposure method and real-time method, were employed. In the double-exposure method, unwanted waves can be eliminated effectively using digital image processing technique and the reconstruction images are clear, but transient flow structure cannot be reconstructed clearly. On the other hand, transient convective flow can be reconstructed well using the real-time method. However, the fringe patterns reconstructed by the real-time method contain more noises, compared with the double-exposure method. Experimental results show a steady flow pattern at low Rayleigh numbers and a time-dependent periodic flow structure at high Rayleigh numbers. The periodic flow pattern at high Rayleigh numbers obtained by the real-time holographic interferometer method is in a good agreement with the PIV results.

  • PDF

Performance Bounds for MMSE Linear Macrodiversity Combining in Rayleigh Fading, Additive Interference Channels

  • Smith, Peter J.;Gao, Hongsheng;Clark, Martin V.
    • Journal of Communications and Networks
    • /
    • v.4 no.2
    • /
    • pp.102-107
    • /
    • 2002
  • The theoretical performance of MMSE linear microdiversity combining in Rayleigh fading, additive interference channels has already been derived exactly in the literature. In the macrodiversity case the fundamental difference is that any given source may well have different average received powers at the different antennas. This makes an exact analysis more difficult and hence for the macrodiversity case we derive a bound on the mean BER and a semi-analytic upper bound on outage probabilities. Hence we provide bounds on the performance of MMSE linear microdiversity combining in Rayleigh fading with additive noise and any number of interferers with arbitrary powers.

Modal Analysis of Large Scale Multi-Machine Power System using Rayleigh Quotient and Deflation (Rayleigh Quotient와 Deflation을 이용한 대형다기(多機)전력계통의 고유치 해석)

  • Shim, Kwan-Shik;Nam, Hae-Kon
    • Proceedings of the KIEE Conference
    • /
    • 1993.07a
    • /
    • pp.76-78
    • /
    • 1993
  • This paper describes an efficient method of computing any desired number of the most unstable eigenvalues and eigenvectors of a large scale multi-machine power system. Approximate eigenvalues obtained by Hessenberg process are refined using Rayleigh quotient iteration with cubic convergence property. If further eigenvalues and eigenvectors are needed, the procedure described above are repeated with deflation. The proposed algorithm can cover all the model types of synchronous machines, exciters, speed governing system and PSS defined in AESOPS. The proposed algorithm applied to New England test system with 10 machines and 39 buses produced the results same with AESOPS in faster computation time. Also eigenvectors computed in Rayleigh quotient iteration makes it possible to make eigen-analysis for improving unstable modes.

  • PDF

Double-Diffusive Convection in a Salt-Stratified Fluid Heated From Below (농도 성층화된 유체의 아랫면 가열에 의한 이중확산대류에 관한 연구)

  • 강신형;김무현;이진호
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.12
    • /
    • pp.3297-3304
    • /
    • 1994
  • Experimental investigation have been made to study the double-diffusive nature of convection of an initially stratified salt-water solution heated from below in a cylindrical cavity. The objective is to examine the process of mixed-layer formation, the flow phenomena, the heat transfer characteristics, and temperature and concentration distribution according to the changes in the effective Rayleigh number based on the reference height which represents the relation of temperature and concentration gradient. The types of initially formed flow pattern are categorized in three regimes depending on the effective Rayleigh number ; stagnant flow regime, single mixed-layer flow regime and successively formed multiple mixed-layer flow regime. The temperature and concentration profiles are both uniform in each layer due to convective mixing in the layered flow regime, but both linear in stagnant flow regime and single mixed-layer flow regime. At the interface between adjacent layers, the temperature changes smoothly but the concentration changes rapidly. The layers expand by diffusion of concentration through the interface along with its random fluctuation.

Prediction of Radiated Sound on Structure-acoustic Coupled Plate by the Efficient Configuration of Structural Sensors (구조센서의 효율적인 구성을 통한 구조 음향연성 평판의 방사음 예측)

  • Lee, Ok-Dong;Oh, Jae-Eung
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.24 no.9
    • /
    • pp.695-705
    • /
    • 2014
  • In this paper, two types of techniques for the prediction of radiated sound pressure due to vibration of a structure are investigated. The prediction performance using wave-number sensing technique is compared to that of conventional prediction method, such as Rayleigh's integral method, for the prediction of far-field radiated sound pressure. For a coupled plate, wave-number components are predicted by the vibration response of plate and the prediction performance of far-field sound is verified. In addition, the applicability of distributed sensors that are not allowable to Rayleigh's integral method is considered and these can replace point sensors. Experimental implementation verified the prediction accuracy of far-field sound radiation by the wave-number sensing technique. Prediction results from the technique are as good as those of Rayleigh's integral method and with distributed sensors, more reduced computation time is expected. To predict the radiated sound by the efficient configuration of structural sensors, composed(synthesized) mode considering sound power contribution is determined and from this size and location of sensors are chosen. Four types of sensor configuration are suggested, simulated and compared.

Natural convection induced by free surface heat flux and temperature difference between left and right walls in glass melting furnace (유리용융로에서 자유표면 열유속과 좌우벽면 온도차에 의한 자연대류)

  • Im, Gwang-Ok;Lee, Gwan-Su
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.11
    • /
    • pp.3706-3713
    • /
    • 1996
  • A numerical study on natural convection induced by free surface heat flux and cold left and hot right walls in glass melting furnaces has been performed. A function of heat flux derived from the combustion environments of actual glass melting furnace is applied to thermal boundary condition at free surface. Fundamentally there exist two flow cells in cavity (left counterclockwise one and right clockwise one). The effects of heat flux and Rayleigh number are investigated through two-dimensional steady-state assumption. The convection strength of two flow cell located in left region continuously increases. In the mean time the strength of flow cell in right region increases and then decreases. Critical Rayleigh number in which two flow cells take place above and below show linear dependence on the free surface heat flux. To maintain the traditional flow pattern (left and right flow cells) in glass melting furnace, Rayleigh number is recommended to be below 10$^{5}$ .

Tradeoffs in frequency-hopped multiple-access communications with reed-solomon code and MFSK in rayleigh fading channel (레일리 페이딩 채널에서 리드-솔로몬 부호와 MFSK를 사용하는 주파수 도약 다중 접속 통신의 Tradeoff)

  • 김상우;김승호
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.23 no.9A
    • /
    • pp.2173-2183
    • /
    • 1998
  • We consider a frequency-hopped multiple-access communication system that employs reed-solomon code over GF(Q) and M-ary FSK signaling ($M{\leq}Q$) in rayleigh fading channel. We investigate the tradeoff among the modulation symbol size (M), the number of frequency slots, and the code rate in maximizing the average number of successfully transmitted information bits per unit time and unit bandwidth (called normalized throughput). We find that it is desirabel to use a large M in noise-limited environment. In interference-limited environment, it is more improtant to prevent errors (hits) by increasing the number of frequency slots than to correct them with formward error correction techniques or to reduce the error rate by increasing M.

  • PDF

A Numerical and Experimental Study of Natural Convection in the Annulus between Horizontal Non-Circular Cylinders with a Uniform Gap (균일한 간격을 가진 비원형환상공간에서의 자연대류에 관한 수치해석 및 실험적 연구)

  • Bai, D.S.;Kwon, S.S.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.2 no.4
    • /
    • pp.257-267
    • /
    • 1990
  • A numerical and experimental investigation has been carried out to understand a characteristic of natural convection within a horizontal non-circular annulus. A finite-difference method has been used to solve the governing equations numerically. The effect of Rayleigh number. Prandtl number, aspect ratio and diameter ratio is studied analytically. The ranges of the parameters studied herein are Rayleigh number from $10^3$ to $2{\times}10^4$, Prandtl number from 0.1 to 10, aspect ratio from 0.25 to 1.5 and diameter ratio from 1.5 to 9.0. A Mach-Zehnder interferometer is used to obtain isothermal fringes for a diameter ratio Do/Di=2.6 and aspect ratio H/L=0.75 experimentally. A comparison between the experimental and numerical results under similar conditions shows good agreement.

  • PDF

A Numerical Study for Natural Convective Heat Transfer by Finite Element Method (유한요소법을 이용한 자연대류열전달 수치해석 연구)

  • ;Ashley F. Emery
    • Journal of Energy Engineering
    • /
    • v.7 no.1
    • /
    • pp.113-121
    • /
    • 1998
  • In natural convection flows, the fluid velocities are highly dependent on the thermal field and property variations can have a strong effect on both the flow and thermal fields. To examine the effect of property variations, at first, numerical analyses covering wide range of the Prandtl number under the same Rayleigh numbers have been carried out. Next, we have modeled the viscosity and thermal conductivity as parabolic functions of temperature and a comprehensive set of numerical solutions have been obtained to understand the effect. The Prandtl number dependence of Nusselt number is fairly strong even though the effect is still weak compared to the Rayleigh number dependence. When thermophysical properties are dependent on temperature, the flow field showed a fairly weak variation except near boundaries, whereas the temperature field is strongly affected, especially by the temperature dependent thermal conductivity.

  • PDF