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Performance Bounds for MMSE Linear Macrodiversity
Combining in Rayleigh Fading, Additive Interference
Channels

Peter J. Smith, Hongsheng Gao, and Martin V. Clark

Abstract: The theoretical performance of MMSE linear microdi-
versity combining in Rayleigh fading, additive interference chan-
nels has already been derived exactly in the literature. In the
macrodiversity case the fundamental difference is that any given
source may well have different average received powers at the dif-
ferent antennas. This makes an exact analysis more difficult and
hence for the macrodiversity case we derive a bound on the mean
BER and a semi-analytic upper bound on outage probabilities.
Hence we provide bounds on the performance of MMSE linear mi-
crodiversity combining in Rayleigh fading with additive noise and
any number of interferers with arbitrary powers.

Index Terms: Adaptive arrays, diversity methods, macrodiversity,
interference suppression, Rayleigh channels.

L. INTRODUCTION

Adaptive arrays and diversity combining have recently at-
tracted great interest in wireless communication systems: By
transmitting signals over a set of M channels (e.g., to an array
of antennas, or over a set of frequency channels), the M re-
ceived signals can be processed to combat channel impairments
such as multipath fading, co-channel interference, and disper-
sion [1]-[17]. In turn, this kind of processing can lead to major
improvements in link performance and system capacity.

One important type of array processing is MMSE linear com-
bining, discussed in detail for the microdiversity case in [4].

In [4] the authors consider an ideal minimum mean-square
error (MMSE) combiner which assumes exact knowledge of
the instantaneous values of all channel gajnsl, and of all source
and noise statistics. In the idealised combiner, the MMSE can
be expressed, using standard techniques, as a function of these
channel gains, and can be translated into a maximum value of
the combiner’s output SINR (signal-to-interference-plus-noise
ratio). The link BER of various modulations can generally be
related to the SINR via well-known approximations and bounds
[11-[3], [16]-17].

In [4] an exact derivation of the output SINR is given which
provides a remarkably simple analytical tool for link perfor-

Manuscript received August 29, 2001; approved for publication by Aki Ogose,
Division II Editor, April 24, 2002.

P. J. Smith is with Department of Electrical and Computer Engineering, Uni-
versity of Canterbury, Private Bag 4800, Christchurch, New Zealand.

H. Gao is with Datamine Ltd, Wellington, New Zealand.

M. V. Clark is with the Mathworks Inc. Boston, MA, USA.

L1n reality, adaptive algorithms would be used to set combiner weights.
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Fig. 1. Communication system.

mance. In this paper we look at the more complex case of
macrodiversity where the exact SINR distribution is unknown.
Hence we derive analytic bounds on the mean BER of such sys-
tems and semi-analytic bounds on the BER distribution. The
bound on the mean BER is particularly appealing as it leads to
valuable insights into macrodiversity combining, has a simple
structure, and is numerically stable.

The paper is organised as follows. In Section II, we describe
the communication system, and formulate the problem. In Sec-
tion III, we bound the mean BER of such systems. Section IV
shows specific cases which relate our formula to standard results
and reveal relevant insights. Section V shows a semi-analytic
bound on the distribution of the BER, and Section VI presents a
set of numerical examples and some conclusions.

II. PROBLEM FORMULATION

We consider the complex-baseband communication system
shown in Fig. 1:

e zg and {21, z2, --- , xn} are the desired source and set
of interfering sources, respectively. Each source comes
from some independent, identically distributed zero-mean
random process with magnitude variance a?.

e g, uy, ug, -, uy are the corresponding M x 1 chan-
nel gain vectors. Each gain in the set of vectors is an
independent zero-mean complex Gaussian random vari-
able. The Rayleigh magnitudes of these gains have the
variances E[unufl] = diag(Pin, -+, Pun), for n =
0,1,2,---, N. Hence u, can be written as

u = (v Pinhin, VP han, -+ s V/Pun han)

=(uln7u2n7"';uMn)a n=20,1,2,---, N
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where the h;;’s are independent and identically distributed
(ii.d.) Gaussians with E[h;;] = 0, E[|hy)?] = 1,0 =
1,---,M,j=1,---,N.

We also define the vector hg as

ho = (h1o, hao, =+ , hao)H.

e nisan M X 1 additive noise vector. Each noise source in
this vector is an independent zero-mean complex Gaussian
process with magnitude variance o2.

o wil isthe 1 x M vector of complex combiner weights. (We
use the Hermitian transpose for analytical convenience.)

e Zg is the estimate of the desired source.

As an example, the desired source could be data symbols to be
detected by the receiver, the interfering sources could be co-
channel interferers, the Rayleigh fading could come from mul-
tipath scattering in radio channels, and the diversity channels
could come from multiple receive antennas. Note also that it
is quite arbitrary which source is defined as the desired source.
For instance, one could envisage an array processor comprising
a set of N + 1 combiners for estimating all N + 1 sources.

The formulation for the MMSE combiner (i.e., optimal
weights, MMSE and maximum SINR) is given in detail in [4].
We summarise the key results in the following. The combiner’s
MMSE is given by

N _ -1
e = E[|Z0 — z0|’] = a®[1 + ulR Lup] 77, )
where
N H 0_2
R= Z unuy + L )
n=1

The maximum SINR at the combiner output is

Z = ui R u,, 3)

and the mean BER can (for certain modulations) be bounded by
BER < ae™?, )

where a depends on the type of modulation (@ = 0.5 for DPSK).
For other modulations (i.e., BPSK or OFSK) bounds are usually
written in terms of the complementary error function. At high
SNR these can also be approximated by the simple exponential
as in (4). Denoting E[e~Z] by @, we can write (BER) <
a® p where expectation is taken over all the independent zero
mean complex Gaussian variables in {ug, --- , un}.

To summarise, we will derive bounds on the mean of the BER
given in (4) and on its distribution function.

ITII. A BOUND ON THE MEAN BER

Suppose that Ay, - -+, Aps are the eigenvalues of the matrix

R = diag(v/ P10, VP20, -+, VPuo)R™?
x diag(v/ P10, v/ Pso, -+, vV Pumo)-

Then there exists a unitary matrix & such that
R= <I>dia,g(/\1, .-

-y dm) B (5)
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Also, if we set H? = hil®, the elements h; of hy are also
ii.d. complex Gaussian random variables with zero mean and
E[|hio|?] = 1. Furthermore, the \,,’s are independent of hy.
Thus, we can average over the desired and interfering signal
vectors separately, i.e.,

Qu=E [exp(—ugR”luO)]
= [exp(—hgﬁho)]

= E |exp(—h§[®diag(\, -+ , )\M)‘I’H]"l)hO]

=1 o
= EA{EEO [exp(— Z [iol )‘1)]}
- {1 5 [t
o .
= E, 1;[1 T /\i]
1
=B m]

1
det(I + diag(Ps0, P20, - - , PMO)R_I)]

[ det(R)
= E, - .
_det(dlag(Plo, P20, ey PMO) + R)
Since the matrices diag(Piq, Pag, -+ , PmMmo), %;—I and R are
all positive definite we have
det(diag(Pyo, P20, -+ , Pmo) + R)

2
> det <diag(P10, Py, -+, Pmo) + Z—zl) ()

Noting that
2

i 4
det (diag(P10, P20, - - -, Pmo) + a_21)

M ;o2
=11 (—2 + Pz'0> , (7
i=1 a
we get
El|det(R
Qum < %—)]— 3
[Tz (ZT + PiO)
Now set
U1 U112 UIN
X=1: S
UM1 UM?2 UMN

2 .
then we have R = %1 + XX¥ and from a matrix result on
determinants of sums we can write
M

o2 (M —3)
det(R) = E (a_z) aj, )

=0



where ap = 1 and «j, j > 0 denotes the sum of the leading
subdeterminants of XX with order j and can be expressed as
shown at the bottom of this page, where (h) denotes a permu-
tation of the integers 1, 2, - - -, j. Using Cauchy’s formula, we
can derive E[a;] as shown at the bottom of this page, where
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IV. SPECIAL CASES

A. Interference-limited System

With no noise (¢ = 0) the bound becomes

the second summation over i, and ¢, is over all pairs of distinct Z Pi;, Py, - Pagiyg
integers in {1,2, - -- , N'}. Therefore (9) becomes 1<ingis <N
QM < —= =
= M
M (M—3) 11 2o
E[det(R)] = Z ( ) i=1
i= = Y Twles T, 12)
1<i, £ <N
X Py i Pryiy - Py, 10
1<k <§k-<M 1<i§<N s ksis (10 where L'y, is defined by Lrnn = Pran/Pro-
= = ST Note that the bound in (12) can be rewritten in terms of a
and we have the bound permanent [8], namely
1 M g2\ (M=D Qur < Per(T), (13)
Qm < 37 5 Z pe}
H (E_ + Pio) i=0 where T' is the N x M matrix (I');; = Tj;. Unfortunately
=1 a? the computation of permanents is #P-complete [12] and so for
large values of M, N an exact evaluation of Per(I') becomes
difficult due to prohibitiv times. The established method of
% Z Z Piyi Prgia -+ Prji, § (11 i lue to pr erun establi d method o
L<ki k<M | 1<iigi<N . approaching such problems is to use randomised algorithms and
= = TS several are available in the literature [6], [7], [10], [18].
H
Ukl Uky2 Uk, N Ukl Uk, 2 Uk N
aj= 3 : S :
1k <k SMA \ug1 g2 ug; NS \Ukj1 Ukj2 Uk; N
2
Uk, 4y Uk io Uk in
Ik <kjSM 1S <-<HGSN oy Uk, Ukjin
2
= 2 Do |2 ki, Ukaing iy |0
1<k <k; <M | 1<i1<<i;<N | (h)
2
Elogl= 3. BQ 3 (D ki, Uk, Uk,
1<ky - <k; <M 1<i; << <N [ (B)
2
t
= E | (—1) tkyin, Ukgin, - Ui,
1<k - <k <M | 1<i<- <zJ<N (R)
2
1<k - <k <M |1<iri<- <z,<N (h)
= Z Z Presin, Prain, *** Phyin,
1<k <kJ M |(1<i1<--<i;EN (h)
= Z Pklhpkgzz N 'ijij ’
1<k; - <k <M | 1<i #i <N
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The microdiversity case.

In microdiversity combining I'y,, = I'y for m =

1,2, .--, M and the bound becomes

> TqLiy Ty

1<ip#h <N

Qum < 14)

In contrast to the bound in (13) involving a permanent, the
bound in (14) is simple to use and a recursion is available [19),
[4]1 which gives extremely rapid computation. Rewriting (14) as
QO < D)y the recursion is given by

k
Dp =Y (1) B (8D,
i=1

where * 1P,y = (k~1)(k~2)---

N i
and D1 = Sl.

In fact for the microdiversity case the SINR density is known
exactly [18], [19] and is given by

(k—i+1), S; =

N
fsing(2) = Zai(l +Ti2)73,

(15)
=1
where
a; = (~-)N MY MIINT Ty,
x [J@s -1, (16)
J#i
and the summation in (16)isoverall 1 < 43 € i € -+ <

ipm—-1 < IV such that é; # 4. The value of Qs therefore is
given by

o N
Qum =/0 Zai(l + T;2) 2exp(~2)dz

=1

and using a standard integral in [20] we have

N
=3 ail73(T — exp(Y/T)Er(1Ty), (U7

i=1

where Fy(-) denotes the exponential integral. Similar results
can be found in {11] where the characteristic function of Z is
derived. The use of (17) makes exact computation of () »s pos-
sible for the microdiversity case (see Fig. 2). Note that although
@ can be computed exactly, the form of (17) does not lead
to insights into the relationship between BER and the interferer
powers. Here the bound given in (14) may be more useful show-
ing the relationship between performance and products of inter-
ferer powers.

B. No Interference
With no interference the bound is found from (8) as

o -1
= [H(l 4+ azpiofo‘z)} , (18)

4==1

(e®/a)M

Qm < 4
H(02/02 + Py)

i=1
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which collapses in the microdiversity case to
Qu < (1+dRy/o®) ™, (19)

as predicted by standard results.

C. No Diversity (M=1)
With no diversity we let P; = Py, I'; = P;/Pg, and (11)

gives
N N
Sk 3w

j=1
(02]a> + Fo)

Q1_<. 1+0"/(G2P)

(20)

V. A SEMI-ANALYTIC BOUND FOR THE BER
DISTRIBUTION

Consider the ontput SINR given in (3).

= u0R~ ug

= hildisg (P, -+, VPatg) R
x diag (vPro, -+, vPuo) ho

= hiR~h,.

We suppose that 1 < 82 < - < In—pry1 are the non-zero
eigenvalues of the matrix R and ¥, is a unitary matrix which

satisfies
& diag(6; < 6; < 0)@ =R

haro) @y,

"SGN——M-f-laO’"',

If we set (hy o, oo, -, hare) = (ha 0, hop, -,

then we have o
Z=Y 67 {hiof.
i=1

From the Cauchy-Schwarz inequality we have

M R M R )
o thiolr =07 2 hi 016} ol
i=1 i=1

M ] Mo
< \((;gfllhi,olz) <;6i(hi,0(2)s

(S, hsol?)”

and so

M a~
Z 6 hipl? >

i=1 E,:l Bilhuol2
which gives
z> (‘21_1 |h1,0| )
~  BiRng
Now R = diag(Pys~ 2. .- P 0"1/2)(—;-I-%-XXH)diag(P"l/2

Ppo~ /%) and so defining X = diag(Py 1/2 1 /2

2
. (Zfix lthZ)
Ty Bel (X XH)h

)X gives

2y
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By setting x§ = blX = (z1, 22, --- , zn)H it is clear that
conditional on hg, the variables z;, zs, - - - , n are indepen-
dent zero mean complex Gaussian variables with Ef|z;|?] =
ZJ 1 |h,0| Pj;. Hence if 21, 22, - -+, 2N are i.i.d. zero-mean
complex Gaussian random vanables we can rewrite Xg by

(zf )
M z M 3
x diag (Z |hj0|2Pj1) 5T (}: |hj0|2PjN)
i=1 i=1
Using this result, (21) becomes
M 2
Z > (Z |hi0|2)
i=1

|hz0|2

H

Xp = ZN)

-1

,(22)

Pel Z +Z|2z| Z|h10|2 (0

where hig, - - , hpo and 21, --- , zn are all i.i.d.. From (4)
we can bound the distribution of the BER in the following way.
Consider the outage probability

P(BER > BERo) = P(Z < %),
where Zy = log(a/BERy) then from (22) we have P(BER >
BERp) as shown at the bottom of this page.

This probability is intractable, but if we condition on {hio},
then it can be computed since it collapses to a weighted sum of
exponentials. Let us define the following constants:

M 2 2 M 2
ag lhzol
={3 |hw|2) -2, , (23)
(i:l a? pc i
M
i =20 Y Pjilhjol’, 4
=1
then we have
N
P(BER > BERy) < P (Z cilzi)? > K) . (25
i=1

Assuming the ¢;’s are all distinct (which occurs with probability
1 as they are continuous random variables) we can express (25)
as

P(BER > BERy)
N N-1 ,
<(- l)N IZ:cl exp 2K/c1), 26)
i=1 H Cj — c‘b
Jj#i
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Fig. 3. Macrodiversity example.

or use a published algorithm [21] to compute it. Hence we have
a semi-analytic bound in the sense that the bound in (26) must
be evaluated by simulating over M variables to give the coef-
ficients. This compares very favourably with direct simulation
where M (N + 1) variables are required. Hence the saving is
MN random number generations for each simulation of the
SINR. In simulating P points, with n replicates at each point
you save nPM N generations and this embodies a huge run-
time reduction.

VI. NUMERICAL EXAMPLES AND CONCLUSIONS

The bound on the mean BER derived in Section III depends
critically on the inequality in (6), where det(diag(Pz0, P20, - -
Pup)+021/a?+XXH) is bounded below by det(diag(P1o, Pzo

, Pro) + 021/a?). This bound can be expected to be tight
when the terms in diag(Pi0, P2o,--- , Pmo) and 021 /a? are
large compared to those in X X ¥. Hence we might predict use-
ful bounds for large signal-plus-noise to interference ratios. In
Fig. 2 and Fig. 3, we give examples of this result for DPSK
modulation.

M 2
P(BER > BER,) < P { (E lhiol2) ) [
i=1

a 0|2

a2

Ma

+ Z |22 Zlh,ol Pﬂ] < }

[

i
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Fig. 2 shows the exact mean BER and the bound in Section III
for a microdiversity example with A/ = 2 antennas and N = 6
interferers (02 = 0,Tg = 1,T; = BTy fori = 1,2,3,4,5,6,

-1

SIR = (Ef=1 I‘i) ). Varying 3 allows the SIR to be var-
ied and produces the curves given in Fig. 2. The exact result in
Fig. 2 is computed using (17) but in Fig. 3, we have the macrodi-
versity case and no known analytic solution exists. Hence simu-
lation is used and Fig. 3 shows the simulated mean BER and the
bound in Section III for a macrodiversity example with M = 2,
N = 6 and 0? = 0. The powers are given by Pjg = Py = 1
and

1 2
1 05

107 o8
T="1o05 02
02 01

0.07 0.07

-1
with SIR = 2y (25:1 2321 I‘ij) . The constant + is altered
to let the SIR vary between 0 and 30dB. The purpose of this ex-
ample is to investigate the bound when the columns in I are not
identical (as in the microdiversity case) but can vary markedly.
In the given example deviations up to 150% can occur.

As expected the bounds perform well in the high signal-plus-
noise to interference region. In these examples there is no addi-
tive noise so a high SIR is necessary for the bound to be tight.
In practice the bound is useful up to mean BERs of 10~2 and
performs well up to 1073,
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