• Title/Summary/Keyword: Rayleigh energy method

Search Result 125, Processing Time 0.027 seconds

Changes of the Flame Temperature and OH Radical in the Unsteady Extinction Process (비정상 소화 과정에서의 화염 온도 및 OH 라디칼의 변화)

  • Lee, Uen-Do;Lee, Ki-Ho;Oh, Kwang-Chul;Shin, Hyun-Dong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.12
    • /
    • pp.1557-1566
    • /
    • 2004
  • A flame extinction phenomenon is a typical unsteady process in combustion. Flame extinction is characterized by various physical phenomena, such as convection, diffusion, and the production of heat and mass. Flame extinction can be achieved by either increasing the strain rate or curvature, by diluting an inert gas or inhibitor, or by increasing the thermal or radiant energy loss. Though the extinction is an inherently transient process, steady and quasi-steady approaches have been used as useful tools for understanding the flame extinction phenomenon. Recently, unsteady characteristics of flames have been studied by many researchers, and various attempts have been made to understand unsteady flame behavior, by using various extinction processes. Representative parameters for describing flame, such as flame temperature, important species related to reactions, and chemi-luminescence of the flame have been used as criterions of flame extinction. In these works, verification of each parameter and establishing the proper criterions of the extinction has been very important. In this study, a time-dependent flame temperature and an OH radical concentration were measured using optical methods, and the instantaneous change of the flame luminosity was also measured using a high-speed ICCD (HICCD) camera. We compare the unsteady extinction points obtained by three different methods, and we discuss transient characteristics of maximum flame temperature and OH radical distribution near the extinction limit.

Incompressible smoothed particle hydrodynamics modeling of thermal convection

  • Moballa, Burniadi;Chern, Ming-Jyh;Odhiambo, Ernest
    • Interaction and multiscale mechanics
    • /
    • v.6 no.2
    • /
    • pp.211-235
    • /
    • 2013
  • An incompressible smoothed particle hydrodynamics (ISPH) method based on the incremental pressure projection method is developed in this study. The Rayleigh-B$\acute{e}$nard convection in a square enclosure is used as a validation case and the results obtained by the proposed ISPH model are compared to the benchmark solutions. The comparison shows that the established ISPH method has a good performance in terms of accuracy. Subsequently, the proposed ISPH method is employed to simulate natural convection from a heated cylinder in a square enclosure. It shows that the predictions obtained by the ISPH method are in good agreements with the results obtained by previous studies using alternative numerical methods. A rotating and heated cylinder is also considered to study the effect of the rotation on the heat transfer process in the enclosure space. The numerical results show that for a square enclosure at, the addition of kinetic energy in the form of rotation does not enhance the heat transfer process. The method is also applied to simulate forced convection from a circular cylinder in an unbounded uniform flow. In terms of results, it turns out that the proposed ISPH model is capable to simulate heat transfer problems with the complex and moving boundaries.

Independent Turbo Coding and Common Interleaving Method among Transmitter Branches Achieving Peak Throughput of 1 Gbps in OFCDM MIMO Multiplexing

  • Kawamoto, Junichiro;Asai, Takahiro;Higuchi, Kenichi;Sawahashi, Mamoru
    • ETRI Journal
    • /
    • v.26 no.5
    • /
    • pp.375-383
    • /
    • 2004
  • This paper proposes a common interleaving method associated with independent channel-encoding among transmitter antenna branches in orthogonal frequency and code division multiplexing based on multiple-input multiple-output (MIMO) multiplexing to achieve an extremely high throughput such as 1 Gbps using a 100 MHz bandwidth. This paper also investigates the average packet error rate performance as a function of the average received signal energy per bit-to-background noise power spectrum density ratio $(E_b/N_0)$. We found that the loss in the required average received $E_b/N_0$ of the proposed method is only within approximately 0.3 dB in up to a 12-path Rayleigh fading channel, using 16QAM and Turbo coding with a coding rate of 5/6. We also clarify that even for a large fading correlation among antenna branches, 1 Gbps is still possible by increasing the transmission power. Therefore, the proposed method reduces the processing rate to 1/4 in the turbo decoder with only a slight loss in the required average received $E_b/N_0$.

  • PDF

Spectral Energy Transmission Method for Crack Depth Estimation in Concrete Structures (콘크리트 구조물의 균열 깊이 추정을 위한 스펙트럼 에너지 기법)

  • Shin, Sung-Woo;Min, Ji-Young;Yun, Chung-Bang;Popovics, John S.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.27 no.2
    • /
    • pp.164-172
    • /
    • 2007
  • Surface cracks in concrete are common defects that can cause significant deterioration and failure of concrete structures. Therefore, the early detection, assessment, and repair of the cracks in concrete are very important for the structural health. Among studies for crack depth assessment, self-calibrating surface wave transmission method seems to be a promising nondestructive technique, though it is still difficult in determination of the crack depth due to the variation of the experimentally obtained transmission functions. In this paper, the spectral energy transmission method is proposed for the crack depth estimation in concrete structures. To verify this method, an experimental study was carried out on a concrete slab with various surface-opening crack depths. Finally, effectiveness of the proposed method is validated by comparing the conventional time-of-flight and cutting frequency based methods. The results show an excellent potential as a practical and reliable in-situ nondestructive method for the crack depth estimation in concrete structures.

A Structural Analysis of Sandwich Plate with Unsymmetrical FRP Thick Faces (두껍고 비대칭인 FRP면재를 갖는 Sandwich 평판의 구조해석)

  • Ik-Tai Kim;Ki-Sung Kim
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.32 no.1
    • /
    • pp.132-140
    • /
    • 1995
  • The structural behavior of sandwich plates with unsymmetricaly thick faces are analysed using Raleigh-Ritz Energy method by comparing the bending stresses, shear stresses, local bending stresses, membrane stresses of skin and core materials including local bending effect. As for sandwich materials, the combination of two types of face materials and three types of core materials are used in the analysis.

  • PDF

A Numerical Analysis in Top Opening Rectangular with a heating source (열원을 가지고 상부가 개방된 사각공간내의 유동에 대한 수치 해석)

  • Bae, K.Y.;Bae, C.W.;Jeong, H.M.;Chung, H.S.
    • Proceedings of the KSME Conference
    • /
    • 2000.11b
    • /
    • pp.321-327
    • /
    • 2000
  • This study represents numerical analysis in top opening rectangular with a heating source. The governing equations were solved by a finite volume method, a SIMPLE algorithm was adopted to solve a pressure term. The top boundary with free surface was calculated by energy balance condition. As the results of simulations, the magnitudes of the velocity vectors and isotherms were very small at the lower space of a heating source. The mean Nusselt numbers are increased proportionally to the Grashof number, the heat transfer at Y/H=0.25 was greater than other positions.

  • PDF

A Study on Combined Heat Transfer in a Enclosure with a Block (밀폐공간내의 피가열체 존재시 복합열전달에 관한 연구)

  • Hong, Seong-Kook;Ryou, Hong-Sun;Hong, Ki-Bae;Chae, Soo
    • Journal of the Korean Society of Safety
    • /
    • v.15 no.1
    • /
    • pp.19-27
    • /
    • 2000
  • This paper numerically deals with combined heat transfer in a enclosure with a block. The block affected by hot wall is located centrally in the enclosure with a radiating gray gas. The discrete ordinate method(DOM) was used for solving the radiative transfer equation. Both laminar and turbulent cases were investigated for various Rayleigh number and standard k-$\varepsilon$ model was adopted to turbulent case. The effects of optical thickness, wall emissivity and fluid-solid thermal conductivity ratio are investigated on the flow and temperature fields. This study shows that as the wall emissivity decreases, the temperature distribution gradually becomes uniform and the heat transfer is reduced in enclosure. It is expected that this study can help to design the energy system related to the combined heat transfer and operate it safely.

  • PDF

Slippage Effects on the Curvature Shape of Unsymmetric Laminates (비대칭 적층판의 곡률형상에 대한 미끄러짐 효과)

  • Roh, Hee-Yuel;Cho, Maeng-Hyo
    • Proceedings of the KSME Conference
    • /
    • 2000.11a
    • /
    • pp.420-425
    • /
    • 2000
  • The room-temperature shapes of cured unsymmetric composite laminates have out-of-plane warping after autoclave processing. In addition, they exhibit two stable room-temperature configurations due to snap-through phenomena when the side length of laminates exceeds a critical value. The cured shapes of unsymmetric laminates are influenced by many environmental factors. Experiments show that the effect of too-plate cannot be ignored and has significant influence on the cured shape of unsymmetric laminates. In this present study, approximations to the strain fields are used in the expression for the total potential energy and the Rayleigh-Ritz method is applied. The slippage effects resulting from the interaction between the laminates and the tool-plate are considered. By introducing a dimensionless slippage coefficient and correlating the corresponding value with experimental results, the influence of processing parameters is investigated. Modeling is extended to predict curvatures of plate configurations with various aspect ratio.

  • PDF

Nondestructive Evaluation of Ceramic/Metal Interface Using the V(z) Curve of Scanning Acoustic Microscope (초음파현미경에서 V(z) 곡선을 이용한 세라믹/금속 접합계면의 비파괴평가)

  • Park Ik-Keun;Lee Chul-Ku;Cho Dong-Su;Kim Yong-Kwon
    • Journal of Welding and Joining
    • /
    • v.23 no.2
    • /
    • pp.59-65
    • /
    • 2005
  • A leaky surface acoustic wave (LSAW) velocity was measured using a scanning acoustic microscope on the ceramic/metal interface in order to investigate material properties. The inverse Fourier transform (IFFT) of the V(z) curve contains the reflectance function of a liquid-specimen interface. So, the longitudinal, transverse, and Rayleigh wave velocities for each layer are obtained by the inversion of the V(z) curve at the same time. This paper contains mainly the experimental procedure for measurements of the LSAW velocity, and the results obtained for the velocity variation of individual layer after the thermal shock. It is shown that this method is useful in measuring the material properties under external stress.

Vibration Characteristics of the Tower Structure of a 750kW Wind Turbine Generator (750kW 풍력발전기 타워 구조의 진동 특성)

  • Kim, Seokhyun;Nam, Y.S.;Eun, Sungyoung
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.2 s.95
    • /
    • pp.219-224
    • /
    • 2005
  • Vibration response of the tower structure of a 750kW wind turbine (W/T) generator is investigated by measurement and analysis. Acceleration response of the W/T tower under various operation condition is monitored in real time by the vibration monitoring system using LabVIEW. Resonance state of the tower structure is diagnosed in the operating speed range. Resonance frequency range of the test model is investigated with the wind speed data of the test site. To predict the tower resonance frequency, tower is modeled as an equivalent beam with a lumped mass and Rayleigh energy method is applied. Calculated tower bending frequency is in good agreement with the measured value and the result shows that the simplified model can be used in the design stage of the W/T tower.