• Title/Summary/Keyword: Ray-Tracing Method

Search Result 330, Processing Time 0.024 seconds

Technology to create a 360-degree panorama of a square room using a single projector and a hemispherical mirror (1대의 프로젝터와 반구형 반사경을 이용한 사각방 360도 파노라마 생성 기법)

  • Lee, Jung-jik;Park, Yoen-yong;Lee, Yun-sang;Lee, Jun-yuep;Jung, Eun-yeong;Yu, Rim;Kang, Myongjin;Jung, Moon-ryul
    • Journal of the Korea Computer Graphics Society
    • /
    • v.26 no.3
    • /
    • pp.133-142
    • /
    • 2020
  • In this research, we describe the method of implementing a 360-degree panorama using one projector, in terms of hardware and in the production of projected pre-distortion images. We propose a method of installing a projector and a reflector on the central ceiling of the space to minimize the shadows generated based on the position of the spectators. We used a virtual camera and virtual space where the projector and hemisphere positions were set to the same as in the exhibition space in Unity. After the image projected on the screen was mapped on the wall of the virtual space, the pre-distortion image was created by the method of capturing from the virtual camera using the ray tracing technique. When the produced pre-distortion image is hemispherical reflected and projected by the projector installed at the same position as the virtual camera, the image is reflected and projected 360 degrees on the panoramic screen.

Photon Mapping-Based Rendering Technique for Smoke Particles (연기 파티클에 대한 포톤 매핑 기반의 렌더링 기법)

  • Song, Ki-Dong;Ihm, In-Sung
    • Journal of the Korea Computer Graphics Society
    • /
    • v.14 no.4
    • /
    • pp.7-18
    • /
    • 2008
  • To realistically produce fluids such as smoke for the visual effects in the films or animations, we need two main processes: a physics-based modeling of smoke and a rendering of smoke simulation data, based on light transport theory. In the computer graphics community, the physics-based fluids simulation is generally adopted for smoke modeling. Recently, the interest of the particle-based Lagrangian simulation methods is increasing due to the advantages at simulation time, instead of the grid-based Eulerian simulation methods which was widely used. As a result, because the smoke rendering technique depends heavily on the modeling method, the research for rendering of the particle-based smoke data still remains challenging while the research for rendering of the grid-based smoke data is actively in progress. This paper focuses on realistic rendering technique for the smoke particles produced by Lagrangian simulation method. This paper introduces a technique which is called particle map, that is the expansion and modification of photon mapping technique for the particle data. And then, this paper suggests the novel particle map technique and shows the differences and improvements, compared to previous work. In addition, this paper presents irradiance map technique which is the pre-calculation of the multiple scattering term in the volume rendering equation to enhance efficiency at rendering time.

  • PDF

Curvature Linear Equation of a Two-Mirror System with a Finite Object Distance (유한 물체 거리를 갖는 2 반사경계의 곡률 선형 방정식)

  • Lee, Jung-Gee;Rim, Cheon-Seog
    • Korean Journal of Optics and Photonics
    • /
    • v.16 no.5
    • /
    • pp.423-427
    • /
    • 2005
  • In this paper, we propose easily tooling method for Seidel third order aberration, which are not well utilized in actual design process due to the complication of mathematical operation and the difficulty of understanding Seidel third order aberration theory, even though most insightful and systematic means in pre-designing for the initial data of optimization. First, using paraxial ray tracing and Seidel third order aberration theory, spherical aberration coefficient is derived for a two-mirror system with a finite object distance. The coefficient, which is expressed as a higher-order nonlinear equation, consists of design parameters(object distance, two curvatures, and inter-mirror distance) and effective focal length(EFL). Then, the expressed analytical equation is solved by using a computer with numerical analysis method. From the obtained numerical solutions satisfying the nearly zero coefficient condition($<10^{-6}$), linear fitting process offers a linear relationship called the curvature linear equation between two mirrors. Consequently, this linear equation has two worthy meanings: the equation gives a possibility to obtain initial design data for optimization easily. And the equation shows linear relationship to a two-mirror system with a finite object distance under the condition of corrected third order spherical aberration.

A Study on the Effect of Atmosphere on the Space Surveillance Radar (우주감시레이다에 대한 지구 대기권 영향 분석 연구)

  • Moon, Hyun-Wook;Choi, Eun-Jung;Lee, Jonghyun;Yeum, Jaemeung;Kwon, Sewoong;Hong, Sungmin;Cho, Sungki;Park, Jang-Hyun;Jo, Jung Hyun
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.29 no.8
    • /
    • pp.648-659
    • /
    • 2018
  • In this study, both the altitude error due to the refraction and the range error due to the delay in the ionosphere with respect to the frequency are extracted according to the radar elevation to analyze the effect of atmosphere on the space surveillance radar. To achieve this, the radio refractivity profile is modeled using the measured data from domestic weather stations. Then, the altitude-error due to the refraction is extracted using the ray tracing method, and the range error in the ionosphere is extracted according to the frequency. Further, considerations for radar design with respect to the radar error characteristics are discussed based on the abroad space surveillance radar and proposed domestic space surveillance radar. This analysis of the error characteristics is expected to be utilized for the determination of radar location, range of steering, and frequency in the space surveillance radar design.

A Study on the Validity of the Prediction of Binaural Parameters by 5 Channel Microphone System (5채널 마이크로폰 시스템을 활용한 공간감 지표 예측의 타당성에 관한 연구)

  • Jang Jae-Hee;Oh Yang-Ki;Jeong Dae-Up;Jeong Hyok
    • The Journal of the Acoustical Society of Korea
    • /
    • v.24 no.2
    • /
    • pp.103-110
    • /
    • 2005
  • Providing adequate amount of spatial impression for spaciousness) has been known to be one of the most important design considerations for the good acoustics of rooms for music. and the measurement, of room acoustics using parameters. such as LEF and IACC, forms an essential part of such evaluation. However. it is unavoidable to use different transducers (figure of eight microphones. head and torso) for the measurement of each parameter and it tends to make the measurement procedure complicated. The Present work tried to provide a simpler way to measure these binaural room acoustic parameters including monaural ones with a single measurement system using both spatial information collected through a 5-channel microphone and a trained neural network. A computer simulation program, CATT-Acoustic V7.2. which allowed us to obtain exactly the same spatial information as a 5-channel microphone was used. since it requires quite a large amount of data for practical training of a neural network. Since each reflection has different energy. delay and direction, energy should be integrated properly. the concept of ray tracing method was applied inversely in this work. Also applying weightings according to the delay times was considered in this work. Finally, predicted results were compared with the measured data md their correlations were analyzed and discussed.

Prediction of the Acoustic Performance of a Music Hall Considering the Radiation Characteristics of Korean Traditional Musical Sources (국악음원의 방사특성을 고려한 국악원의 음향 성능 예측)

  • 정철호;이정권;연철호;한찬훈
    • The Journal of the Acoustical Society of Korea
    • /
    • v.23 no.2
    • /
    • pp.146-161
    • /
    • 2004
  • There have been always some difficulties in target setting and conditioning of acoustic performances of the Korean traditional music hall due mainly to the lack of the information on the sound radiation characteristics of Korean musical sources. In this study, the radiation characteristics of four typical Korean traditional musical sources were investigated in precision and their usage was demonstrated: The selected musical sources were Gayageum (string), Daegeum (woodwind), Jango (drum), and Pansori Chang (vocal performance). Each sound source was located at the center of a semi-anechoic chamber and the directivity was determined by the measured sound pressure levels in every 10° angular position, for both vertical and horizontal directions. The directivity pattern of Gayageum varies from a uniform to a complex pattern having many side lobes with the increase of frequency. The main radiation of Daegeum is toward the upward direction. The directivity pattern of Jango is clearly a side-oriented one and the left direction intensity is sharper than its right side at low frequencies. For the Chang, the directivity pattern change from a uniform pattern to a frontally directed one as the frequency goes high. Measured directional and spectral characteristics of traditional Korean music sources were implemented into the computation of architectural acoustic measures for the Busan National Korean Traditional Music Hall which is under construction. Parameters such as RT, SPL, C80, IE, STI were calculated at two receiver positions by using a ray tracing technique. Significant differences in the acoustic measures at receiver positions were observed between the results in using the omni-directional source and the directional one. It is thought that the suggested source data and design method can be used as a basic reference in the future acoustic design of performance halls for the Korean traditional music.

Design of Internal Coupling Structure for Touch Panel Devices Using Optical Coupling of a Pen-Shaped Light Source with Optical Waveguides (광원을 내장한 펜의 출력광과 광 도파로의 광 결합을 이용하는 터치 패널 장치의 내부 광 결합 구조 설계)

  • Park, Dae-Seo;Kim, Dae-Jong;O, Beom-Hoan;Park, Se-Geun;Lee, El-Hang;Lee, Seung-Gol
    • Korean Journal of Optics and Photonics
    • /
    • v.20 no.2
    • /
    • pp.128-133
    • /
    • 2009
  • In this paper, an optical touch panel device is newly proposed, with operating principle based on the optical coupling between a pointing pen having a built-in light source and perpendicularly crossed optical waveguide arrays. In order to enable an external light to couple into a waveguide core, the auxiliary pyramidal structures are introduced into all intersecting points located periodically along optical waveguides. The shape is optimized for minimizing the unwanted propagation loss due to the same structure by a ray tracing method. For the optical waveguide with the size of $50{\times}50{\mu}m^2$, the bottom width, height, and slope angle of the optimized pyramidal structure are $50{\mu}m$, $22.5{\mu}m$, and $42^{\circ}$, respectively. The optical coupling efficiency of about 97.8% and the average propagation loss of 0.3 dB/mm were achieved for the optimized touch panel. Finally, it is found from the tolerance analysis that tilting of the pen up to ${\pm}12^{\circ}$ can be allowed.

Passive Alignment of Photodiode by using Visible Laser and Flip Chip Bonding (가시광 레이저를 이용한 수광소자의 수동정렬 및 플립칩본딩)

  • Yu, Chong-Hee;Lee, Sei-Hyoung;Lee, Jong-Jin;Lim, Kwon-Seob;Kang, Hyun-Seo
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.14 no.3
    • /
    • pp.7-13
    • /
    • 2007
  • In the optical module for optical communications, the flip chip bonding is used fer the precise alignment of the optical fiber and optical device. In flip chip bonding, the optical device is aligned and welded while observing the alignment mark of substrate and chip by using flip chip bonder in order to bond the optical device at the exact position. In this research, optical passive alignment method of photodiode(PD) flip chip bonding is suggested for low cost optical subassembly. By using the visible He-Ne laser (633nm wavelength), photodiode is easily aligned with emitting spot on the optical fiber with the help of stereoscopic alignment system. We compensated wavelength dependent deviation about 4m to find out real alignment position of 1550nm input laser by ray tracing. The maximum optical coupling efficiency between the optical fiber and photodiode was about 23.3%.

  • PDF

Visual Feedback System for Manipulating Objects Using Hand Motions in Virtual Reality Environment (가상 환경에서의 손동작을 사용한 물체 조작에 대한 시각적 피드백 시스템)

  • Seo, Woong;Kwon, Sangmo;Ihm, Insung
    • Journal of the Korea Computer Graphics Society
    • /
    • v.26 no.3
    • /
    • pp.9-19
    • /
    • 2020
  • With the recent development of various kinds of virtual reality devices, there has been an active research effort to increase the sense of reality by recognizing the physical behavior of users rather than by classical user input methods. Among such devices, the Leap Motion controller recognizes the user's hand gestures and can realistically trace the user's hand in a virtual reality environment. However, manipulating an object in virtual reality using a recognized user's hand often causes the hand to pass through the object, which should not occur in the real world. This study presents a way to build a visual feedback system for enhancing the user's sense of interaction between hands and objects in virtual reality. In virtual reality, the user's hands are examined precisely by using a ray tracing method to see if the virtual object collides with the user's hand, and when any collision occurs, visual feedback is given through the process of reconstructing the user's hand by moving the position of the end of the user's fingers that enter the object through sign distance field and reverse mechanics. This enables realistic interaction in virtual reality in real time.

Local Shape Analysis of the Hippocampus using Hierarchical Level-of-Detail Representations (계층적 Level-of-Detail 표현을 이용한 해마의 국부적인 형상 분석)

  • Kim Jeong-Sik;Choi Soo-Mi;Choi Yoo-Ju;Kim Myoung-Hee
    • The KIPS Transactions:PartA
    • /
    • v.11A no.7 s.91
    • /
    • pp.555-562
    • /
    • 2004
  • Both global volume reduction and local shape changes of hippocampus within the brain indicate their abnormal neurological states. Hippocampal shape analysis consists of two main steps. First, construct a hippocampal shape representation model ; second, compute a shape similarity from this representation. This paper proposes a novel method for the analysis of hippocampal shape using integrated Octree-based representation, containing meshes, voxels, and skeletons. First of all, we create multi-level meshes by applying the Marching Cube algorithm to the hippocampal region segmented from MR images. This model is converted to intermediate binary voxel representation. And we extract the 3D skeleton from these voxels using the slice-based skeletonization method. Then, in order to acquire multiresolutional shape representation, we store hierarchically the meshes, voxels, skeletons comprised in nodes of the Octree, and we extract the sample meshes using the ray-tracing based mesh sampling technique. Finally, as a similarity measure between the shapes, we compute $L_2$ Norm and Hausdorff distance for each sam-pled mesh pair by shooting the rays fired from the extracted skeleton. As we use a mouse picking interface for analyzing a local shape inter-actively, we provide an interaction and multiresolution based analysis for the local shape changes. In this paper, our experiment shows that our approach is robust to the rotation and the scale, especially effective to discriminate the changes between local shapes of hippocampus and more-over to increase the speed of analysis without degrading accuracy by using a hierarchical level-of-detail approach.