• Title/Summary/Keyword: Ray Marching

Search Result 9, Processing Time 0.024 seconds

Volume Ray Casting Acceleration Method using Modified Marching Cubes Tables (변형된 마칭큐브 테이블을 이용한 볼륨 광선 투과법 가속화)

  • Lim, Suk-Hyun;Kim, Ju-Hwan;Shin, Byeong-Seok
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.36 no.3
    • /
    • pp.210-216
    • /
    • 2009
  • Several empty-space leaping methods have been proposed for CPU-based volume ray casting. When sample points are located in semi-transparent cells, however, previous leaping methods perform unnecessary resamplings even if the scalar values on those points are confined within transparent range. A semi-transparent cells leaping method for volume ray casting using the Marching Cubes algorithm is proposed to solve this problem in our previous work. When a ray reaches a semi-transparent cell, our method performs in-out test between current sample point and the bounding box enclosing the triangles generated by the Marching Cubes. If the sample point lies on outside of the bounding box, we estimate the point is regarded as transparent. In this case, the ray advances to the next sample point without performing a resampling operation. We can frequently refer the tables for neighboring voxels, however, when we exploit conventional data structures of the Marching Cubes. We propose modified Marching Cubes tables for solving this problem.

Indirect Illumination Algorithm with Mipmap-based Ray Marching and Denoising (밉맵기반 레이 마칭과 디노이징을 이용한 간접조명 알고리즘)

  • Zhang, Bo;Oh, KyoungSu
    • Journal of Korea Game Society
    • /
    • v.20 no.3
    • /
    • pp.75-84
    • /
    • 2020
  • This paper introduces an interactive indirect illumination algorithm which considers indirect visibility. First, a small number of rays are emitted on hemisphere of the current pixel to obtain the first intersection. If this point is directly illuminated by the light source, its illuminated color is collected. Second, in order to approximate the indirect visibility, a 3D ray marching algorithm, which is based on a hierarchy structure, is used to accelerate the ray-voxel intersection. Third, the indirect images are denoised by an edge-avoiding filtering with a local means replacement method.

GPU-based modeling and rendering techniques of 3D clouds using procedural functions (절차적 함수를 이용한 GPU기반 실시간 3D구름 모델링 및 렌더링 기법)

  • Sung, Mankyu
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.23 no.4
    • /
    • pp.416-422
    • /
    • 2019
  • This paper proposes a GPU-based modeling and rendering of 3D clouds using procedural functions. The formation of clouds is based on modified noise function made with fbm(Fractional Brownian Motion). Those noise values turn into densities of droplets of liquid water, which is a critical parameter for forming the three different types of clouds. At the rendering stage, the algorithm applies the ray marching technique to decide the colors of cloud using density values obtained from the noise function. In this process, all lighting attenuation and scattering are calculated by physically based manner. Once we have the clouds, they are blended on the sky, which is also rendered physically. We also make the clouds moving in the sky by the wind force. All algorithms are implemented and tested on GPU using GLSL.

Automatic 3D model generation from 2D X-ray images

  • Le Minh Tuan;Kim Hae-Kwang
    • Proceedings of the IEEK Conference
    • /
    • summer
    • /
    • pp.361-364
    • /
    • 2004
  • This paper describes an automatic 3D models generation algorithm based on 2D silhouette images, using X-ray camera without camera parameters. The algorithm takes a multi steps process approach. First, a series of 2D silhouette images is captured from different directions of object and then converted to binary images. An octree data structure is constructed for voxel-based representation of object. An estimate 3D volume of object can be reconstructed by intersecting voxels and the 2D silhouettes. The marching cube algorithm is applied to get triangle mesh representing of the obtained 3D model for rendering.

  • PDF

A Field Application of 3D Seismic Traveltime Tomography (I) - Constitution of 3D Seismic Traveltime Tomography Algorithm - (3차원 탄성파 토모그래피의 현장 적용 (1) - 3차원 토모그래피 알고리즘의 구성 -)

  • Moon, Yoon-Sup;Ha, Hee-Sang;Ko, Kwang-Buem;Kim, Ji-Soo
    • Tunnel and Underground Space
    • /
    • v.18 no.3
    • /
    • pp.202-213
    • /
    • 2008
  • In this study, theoretical approach of 3D seismic traveltime tomography was investigated. To guarantee the successful field application of 3D tomography, appropriate control of problem associated with blind zone is pre-requisite. To overcome the velocity distortion of the reconstructed tomogram due to insufficient source-receiver array coverage, the algorithm of 3D seismic traveltime tomography based on the Fresnel volume was developed as a technique of ray-path broadening. For the successful reconstruction of velocity cube, 3D traveltime algorithm was explored and employed on the basis of 2nd order Fast Marching Method(FMM), resulting in improvement of precision and accuracy. To prove the validity and field application of this algorithm, two numerical experiments were performed for globular and layered models. The algorithm was also found to be successfully applicable to field data.

3D Overhead Modeling Using Depth Sensor

  • Song, Eungyeol;Lee, Sangyoun
    • Journal of International Society for Simulation Surgery
    • /
    • v.1 no.2
    • /
    • pp.83-86
    • /
    • 2014
  • Purpose This paper was purposed to suggest the method to produce the supportive helmet (head correction) for the infants who are suffering from plagiocephaly and to evaluate the level of transformation through 3D model. Method Either of CT or X-ray restored images has been used in making the supportive helmet (Head correction) in general, but these methods of measuring have problems in cost and safety. 3D surface measurement technology was suggested to solve such matters. Results It was to design the transformed model of the head within 0.7cm in average by scanning the surface of head and performing 3D restoration with marching cube and the changing rate of the head was compared in numerical data with 3D model. Conclusion The suggested methods displayed the better performance than the conventional method in respect of the speed and cost.

Development of Rendering Techniques for Particle-based Flow Simulation (입자 기반 유동 시뮬레이션의 렌더링 기술 개발)

  • Lee, Byung-Hyuk;Park, Jong-Chun;Jang, Young-Su;Kim, Sang-Hyun
    • Journal of Ocean Engineering and Technology
    • /
    • v.23 no.1
    • /
    • pp.38-42
    • /
    • 2009
  • Recently, various particle based simulation techniques, which solve the Navier Stokes and continuity equations, have been developed and applied to complicated engineering problems. However, although progress is being made on their visualization or rendering techniques, these are still insufficient. In this study, to render a smooth configuration for a free surface, a rendering technique was developed that included the generation of density fields from the location information for simulated particles and the creation model for a polygonal surface. The developed rendering technique was applied to the visualization of a dynamic free surface flow interacting with a structure using a particle based simulation technique.

Smoke Rendering Method in Post-processing for Safety-Training Contents (안전 훈련 콘텐츠에 적합한 포스트 프로세싱 단계에서의 연기 렌더링 방법)

  • Park, Sanghyun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.11
    • /
    • pp.1644-1652
    • /
    • 2022
  • In the case of safety training where practical training is impossible due to risk problems, training contents using realistic media such as virtual reality or augmented reality are becoming a new alternative. In this paper, we propose a smoke modeling method that can be applied to safety-training contents implemented with realistic media technology. When an accident occurs in a hazardous area such as a petrochemical plant, visibility is not secured due to gas leakage and fire. In order to create such a situation, it is important to realistically express smoke. The proposed method is a smoke model implementation technique that can be effectively applied to the background of complex passages and devices such as petrochemical plants. In the proposed method, the smoke is expressed using volumetric rendering in the post-processing stage for the resulting image of scene rendering. Implementation results in the background of the factory show that the proposed method produces models that can express the smoke realistically.

Local Shape Analysis of the Hippocampus using Hierarchical Level-of-Detail Representations (계층적 Level-of-Detail 표현을 이용한 해마의 국부적인 형상 분석)

  • Kim Jeong-Sik;Choi Soo-Mi;Choi Yoo-Ju;Kim Myoung-Hee
    • The KIPS Transactions:PartA
    • /
    • v.11A no.7 s.91
    • /
    • pp.555-562
    • /
    • 2004
  • Both global volume reduction and local shape changes of hippocampus within the brain indicate their abnormal neurological states. Hippocampal shape analysis consists of two main steps. First, construct a hippocampal shape representation model ; second, compute a shape similarity from this representation. This paper proposes a novel method for the analysis of hippocampal shape using integrated Octree-based representation, containing meshes, voxels, and skeletons. First of all, we create multi-level meshes by applying the Marching Cube algorithm to the hippocampal region segmented from MR images. This model is converted to intermediate binary voxel representation. And we extract the 3D skeleton from these voxels using the slice-based skeletonization method. Then, in order to acquire multiresolutional shape representation, we store hierarchically the meshes, voxels, skeletons comprised in nodes of the Octree, and we extract the sample meshes using the ray-tracing based mesh sampling technique. Finally, as a similarity measure between the shapes, we compute $L_2$ Norm and Hausdorff distance for each sam-pled mesh pair by shooting the rays fired from the extracted skeleton. As we use a mouse picking interface for analyzing a local shape inter-actively, we provide an interaction and multiresolution based analysis for the local shape changes. In this paper, our experiment shows that our approach is robust to the rotation and the scale, especially effective to discriminate the changes between local shapes of hippocampus and more-over to increase the speed of analysis without degrading accuracy by using a hierarchical level-of-detail approach.