• Title/Summary/Keyword: Raw VLBI Data Buffer(RVDB) system

Search Result 5, Processing Time 0.02 seconds

PERFORMANCE EVALUATION AND DEVELOPMENT OF RVDB SYSTEM FOR THE SYNCHRONIZED PLAYBACK PROCESSING OF OBSERVED DATA IN KJJVC (한일공동VLBI상관기에서 관측 데이터의 동기재생처리를 위한 RVDB 시스템 개발과 성능시험)

  • Oh, Se-Jin;Roh, Duk-Gyoo;Yeom, Jae-Hwan;Chung, Hyun-Soo;Lee, Chang-Hoon;Kim, Kwang-Dong;Kim, Hyo-Ryoung;Oyama, Tomoaki;Kawaguchi, Noriyuki;Ozeki, Kensuke
    • Publications of The Korean Astronomical Society
    • /
    • v.23 no.2
    • /
    • pp.91-107
    • /
    • 2008
  • In this paper, we introduce the performance evaluation and development of Raw VLBI Data Buffer(RVDB) system for the synchronized playback processing of observed data in Korea-Japan Joint VLBI Correlator(KJJVC). The high-speed correlation processing system is under development so that the radio data obtained with 8192 channels and 8 Gbps speed from 16 stations will be able to be processed. When the recorded data of each station are played to correlator, the time synchronization of each station is very important because the correlator should process the data obtained with same time and condition. There are many types of recorder systems in the East Asia VLBI Network (EAVN). Therefore it is required to prepare the special time synchronized playback processing system to synchronize the time tag of observed data. The developed RVDB system consists of Data Input Output(DIO), 10GbE switch, and Disk Data Buffer(DDB). It can record the data with maximum 2 Gbps speed, and can play back the data to correlator with nominal 2 Gbps speed. To enable to play back the data of different playback system to the correlator, we developed the high-speed time synchronized playback processing system. We carried out the experiments of playing back and correlation for gigabit correlator and VCS trial product so as to confirm the performance of developed time synchronized playback processing system. In case of online and offline playing back experiment for gigabit correlator, we confirmed that the online and offline correlation results were the same. In case of playing back experiment for VCS trial product, we verified that the wide band and narrow band correlation results were also the same. Through the playing back experiments of RVDB system, the effectiveness of developed RVDB system was verified. In this paper, the system design, construction and experimental results are shown briefly.

Design and development of VSI Optical Adapter for high speed transmission of VLBI observation data (VLBI 관측데이터 초고속 전송을 위한 VSI 광변환 송수신 장치의 설계 및 개발)

  • Oh, Se-Jin;Roh, Duk-Gyoo;Yeom, Jae-Hwan;Jung, Jin-Seung;Jung, Dong-Kyu;Oh, Chung-Sik;Ozeki, Kensuke;Onuki, Hirofumi;Harada, Keniichi
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.14 no.4
    • /
    • pp.261-269
    • /
    • 2013
  • This paper describes the design and development of VSI (VLBI standard interface) optical adapter for transmitting VLBI(Very long baseline interferometry) observation data with optical signal. VSI cable comprised of 80-line is being used for observed data transmission with maximum length of 5-meter between playbacks (Mark5B, VERA2000) and raw VLBI data buffer (RVDB), RVDB and VLBI correlation subsystem (VCS) in Daejeon correlator. It has a plan to conduct the data processing for 16-stations and introduce the 14 RVDB systems in near future. And data loss frequently occurred because of trouble of VSI cable MDR80 connector. By considering the data loss by connector error of VSI cable, RVDB system extension plan, effective space usage and long distance data transmission(e-VLBI), the VSI optical adapter was proposed and developed for effectively transmitting and receiving VLBI data through optical signal. In order to confirming the performance of developed VSI optical adapter, the experiments for data transmission was conducted between playback and RVDB system, and confirmed that data transmission was clearly done without any data loss.

A Study on the Noise Reduction Method for Data Transmission of VLBI Data Processing System (VLBI 자료처리 시스템의 데이터 전송에서 잡음방지에 관한 연구)

  • Son, Do-Sun;Oh, Se-Jin;Yeom, Jae-Hwan;Roh, Duk-Gyoo;Jung, Jin-Seung;Oh, Chung-Sik
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.12 no.4
    • /
    • pp.333-340
    • /
    • 2011
  • KJJVC(Korea-Japan Joint VLBI Correlator) was installed at the KJCC(Korea-Japan Correlation Center) and has been operated by KASI(Korea Astronomy and Space Science Institute) from 2009. KJNC is able to correlate the VLBI observed data through KVN(Korean VLBI Network), VERA(VLBI Exploration of Radio Astrometry), and JVN(Japanese VLBI Network) and its joint network array. And it is used exclusively as computer in order to process the observed data for the scientific purpose KJJVC used the VSI(VLBI Standard Interface) as the VLBI international standard at the data input-output specification between each component. Especially, for correlating the observed data, the data is transmitted with 1024Mbps speed between Mark5B high-speed playback and RVDB(Raw VLBI Data Buffer). The EMI(Electromagnetic lnterference), which is occurred by data transmission with high-speed, cause the data loss and the loss occurrence is frequently often for long transmission cable. Finally it will be caused the data recognition error by decreasing the voltage level of digital data signal. In this paper, in order to minimize the data loss by measuring the EMI noise level in transmission of the VSI specification, the 3 methods such as 1) RC filtering method, 2) lmpedance matching using Microstrip line, and 3) Signal buffering method using Differential line driver, were proposed. To verify the effectiveness of each proposed method, the performance evaluation was conducted by implementing and simulations for each method. Each proposed method was effectively confirmed as the high-speed data transmission of the VSI specification.

INSTALLATION AND PERFORMANCE VERIFICATION OF VLBI CORRELATION SUBSYSTEM (VLBI 상관서브시스템의 현장설치 및 시험결과 고찰)

  • Oh, Se-Jin;Roh, Duk-Gyoo;Yeom, Jae-Hwan;Park, Sun-Youp;Kang, Yong-Woo;Oh, Chung-Sik;Oyama, Tomoaki;Kawaguchi, Noriyuki;Kobayashi, Hideyuki;Kawakami, Kazuyuki
    • Publications of The Korean Astronomical Society
    • /
    • v.27 no.1
    • /
    • pp.1-16
    • /
    • 2012
  • In this paper, we describe the installation of VLBI Correlation Subsystem (VCS) main product and its performance at the Korea-Japan Correlation Center (KJCC). The VCS main product was installed at KJCC in August 2009. For the overall performance evaluation of VCS, playbacks, Raw VLBI Data Buffer (RVDB) system, and Data Archive (DA) system were installed together. The VCS main product was connected between RVDB and DA, and the correlation results were put into the DA to confirm the normal operation of VCS 16 station mode configuration. The evaluation test was first performed with 4 station mode, same as the factory test of VCS main product. Based on the results of 4 station mode, the same evaluation test was conducted for 16 station mode of VCS. We found that the correlation results of VCS were almost similarly compared to those of the Mitaka FX Correlator. Through the test results, we confirmed that the problems such as spectrum errors, delay parameter processing module and field programmable gate array errors in antenna unit, which were generated at the factory test of VCS main product, were clearly solved. And we verified the performance and connectivity of VCS by obtaining the expected correlation results and we also confirmed that the performance of VCS was sufficient for real VLBI observation data in both 4 and 16 station modes.

A Study on the Development of Playback Control Software for Mark5B VSI System

  • Oh, S.J.;Yeom, J.H.;Roh, D.G.;Chung, H.S.;Kim, K.D.;Cappallo, Roger
    • Journal of Astronomy and Space Sciences
    • /
    • v.27 no.2
    • /
    • pp.107-116
    • /
    • 2010
  • We developed the playback control software for a high-speed playback system which is a component of the Korea-Japan Joint VLBI Correlator (KJJVC). The Mark5B system, which is a recorder and playback system used in the Korean VLBI Network (KVN), has two kinds of operation mode. That is to say, the station unit (SU) mode, which is for the present Mark4 system, and the VSI mode, which is for the new VLBI standard interface (VSI) system. The software for SU is already developed and widely used in the Mark4 type VLBI system, but the software for VSI has only been developed for recording. The new VLBI system is designed with a VSI interface for compatibility between different systems. Therefore, the playback control software development of the VSI mode is needed for KVN. In this work, we developed the playback control software of the Mark5B VSI mode. The developed playback control software consists of an application part for data playing back, a data input/output part for the VSI board, a module for the StreamStor RAID board, and a user interface part, including an observation time control part. To verify the performance of developed playback control software, the playback and correlation experiments were performed using the real observation data in Mark5B system and KJJVC. To check the observation time control, the data playback experiment was performed between the Mark5B and Raw VLBI Data Buffer (RVDB) systems. Through the experimental results, we confirmed the performance of developed playback control software in the Mark5B VSI mode.