• Title/Summary/Keyword: Rational Function Model

Search Result 132, Processing Time 0.031 seconds

Are Korean Smokers Rational Addicts\ulcorner: An Analysis of Cigarette Consumption by the Rational Addiction Model (한국의 흡연자는 합리적 중독자인가 \ulcorner : 합리적 중독 모형(Rational Addiction Model)에 의한 담배소비 분석)

  • 이종국;공문기;이회경
    • Health Policy and Management
    • /
    • v.9 no.3
    • /
    • pp.53-69
    • /
    • 1999
  • In this study. we present a modified rational addiction model which incorporates social-psychological factors. This is done through a utility function which includes social-psychological factors as its component. We apply this model to a cigarette consumption function in Korea using the data from the Korean Household Panel Study(KHPS). The results provide relatively strong support for the rational addiction model. However. the impact of social-psychological factors and the short-run and long-run price elasticities are statistically insignificant.

  • PDF

Geometrical Comparisons between Rigorous Sensor Model and Rational Function Model for Quickbird Images

  • Teo, Tee-Ann;Chen, Liang-Chien
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.750-752
    • /
    • 2003
  • The objective of this investigation is to compare the geometric precision of Rigorous Sensor Model and Rational Function Model for QuickBird images. In rigorous sensor model, we use the on-board data and ground control points to fit an orbit; then, a least squares filtering technique is applied to collocate the orbit. In rational function model, we first use the rational polynomial coefficients provided by the satellite company. Then the systematic bias of the coefficients is compensated by an affine transformation using ground control points. Experimental results indicate that, the RFM provides a good approximation in the position accuracy.

  • PDF

Accuracy of Precision Ground Coordinates Determination Using Inverse RPC in KOMPSAT Satellite Data (다목적실용위성(KOMPSAT)의 Inverse RPC 해석을 통한 정밀지상좌표 결정 정확도)

  • Seo, DooChun;Jung, JaeHun;Hong, KiByung
    • Aerospace Engineering and Technology
    • /
    • v.13 no.2
    • /
    • pp.99-107
    • /
    • 2014
  • There are two types of Physical Model and RFM (Rational Function Model) is to determinate ground coordinates using KOMPSAT-2 and KOMPSAT-3 satellite data. Generally, RPCs(Rational Polynomial Coefficients) based on RFM is provided for users. This RPCs is to compute the ground coordinates to the image coordinates. If users produce ortho-image with provided RPCs is useful, directly compute the ground coordinates corresponding to image coordinates and check location accuracy etc. are difficult. In this study, a basic algorithm of inverse RPCs that calculates the image coordinates to ground coordinates, compute based on provided RPCs and evaluation of determinated ground coordinates using developed inverse RPCs were proposed.

Extraction of rational functions by forced vibration method for time-domain analysis of long-span bridges

  • Cao, Bochao;Sarkar, Partha P.
    • Wind and Structures
    • /
    • v.16 no.6
    • /
    • pp.561-577
    • /
    • 2013
  • Rational Functions are used to express the self-excited aerodynamic forces acting on a flexible structure for use in time-domain flutter analysis. The Rational Function Approximation (RFA) approach involves obtaining of these Rational Functions from the frequency-dependent flutter derivatives by using an approximation. In the past, an algorithm was developed to directly extract these Rational Functions from wind tunnel section model tests in free vibration. In this paper, an algorithm is presented for direct extraction of these Rational Functions from section model tests in forced vibration. The motivation for using forced-vibration method came from the potential use of these Rational Functions to predict aerodynamic loads and response of flexible structures at high wind speeds and in turbulent wind environment. Numerical tests were performed to verify the robustness and performance of the algorithm under different noise levels that are expected in wind tunnel data. Wind tunnel tests in one degree-of-freedom (vertical/torsional) forced vibration were performed on a streamlined bridge deck section model whose Rational Functions were compared with those obtained by free vibration for the same model.

A Data Fitting Technique for Rational Function Models Using the LM Optimization Algorithm (LM 최적화 알고리즘을 이용한 유리함수 모델의 데이터 피팅)

  • Park, Jae-Han;Bae, Ji-Hun;Baeg, Moon-Hong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.8
    • /
    • pp.768-776
    • /
    • 2011
  • This paper considers a data fitting problem for rational function models using the LM (Levenberg-Marquardt) optimization method. Rational function models have various merits on representing a wide range of shapes and modeling complicated structures by polynomials of low degrees in both the numerator and denominator. However, rational functions are nonlinear in the parameter vector, thereby requiring nonlinear optimization methods to solve the fitting problem. In this paper, we propose a data fitting method for rational function models based on the LM algorithm which is renowned as an effective nonlinear optimization technique. Simulations show that the fitting results are robust against the measurement noises and uncertainties. The effectiveness of the proposed method is further demonstrated by the real application to a 3D depth camera calibration problem.

The Application of Orbital Modeling and Rational Function Model for Ground Coordinate from High Resolution Satellite Data (고해상도 인공위성데이터로부터 지상좌표 결정을 위한 궤도모델링 및 RFM기법 적용)

  • Seo, Doo-Chun;Yang, Ji-Yeon;Lee, Dong-Han;Im, Hyo-Suk
    • Aerospace Engineering and Technology
    • /
    • v.7 no.2
    • /
    • pp.187-195
    • /
    • 2008
  • Generation of accurate ground coordinates from high resolution satellite image are becoming increasingly of interest. The primary focus of this paper is to compute satellite direct sensor model (DSM) and rational function model (RFM) for accurate generation of ground coordinates from high resolution satellite images. Being based on this we presented an algorithm to be able to efficiently ground coordinates about large area with introducing RFM(rational function model) method applied to rigorous sensor modeling standing on basis of satellite orbit dynamics and collinearity equation, and sensor modeling of high-resolution satellite data like IKONOS, QuickBird, KOMPSAT-2 and others. The general high resolution satellite measures the position, velocity and attitude data of satellite using star, gyro, and GPS sensors.

  • PDF

Bundle Adjustment of KOMPSAT-3A Strip Based on Rational Function Model (Rational Function Model 기반 KOMPSAT-3A 스트립 번들조정)

  • Yoon, Wansang;Kim, Taejung
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.3
    • /
    • pp.565-578
    • /
    • 2018
  • In this paper, we investigate the feasibility of modelling image strips, instead of individual scenes, that have been acquired from the same orbital pass through the process of bundle adjustments. Under this approach, First, a rational function model (RFM) of the strip image is generated from the RFMs of individual images, such that the entire strip of images can be treated as a single image. Correction parameters are calculated through bundle adjustments between strip images. For the experiment, we used two stereo strips. Each strip image consists of three KOMPSAT-3A scenes. Experimental results show that it was possible to improve the initial model by using the control points located in a specific region of the strip. We showed that absolute orientation with moderate accuracy of 2 m errors were achieved from 12 ground control points for the three-image strips. The test results indicate that bundle adjustment of strip images could be more efficient than bundle adjustments of the individual scenes.

Rational function model-based image matching for digital elevation model

  • PARK CHOUNG-HWAN
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2005.11a
    • /
    • pp.59-80
    • /
    • 2005
  • This Paper Presents a Rational Function Model (RFM)-based image matching technique for IKONOS satellite imagery. This algorithm adopts the object-space approach and reduces the search space within the confined line-shaped area called the Piecewise Matching Line (PLM). Also, the detailed procedure of generating 3-D surface information using the Rational Function model Coefficients (RFCs) is introduced as an end-user point of view. As a result, the final generated Digital Elevation Model (DEM) using the proposed scheme shows a mean error of 2$\cdot$2 m and RMSE of 3$\cdot$8 m compared with that from 1:5000 digital map.

  • PDF

Rational Function Model Generation for CCD Linear Images and its Application in JX4 DPW

  • Zhao, Liping;Wang, Wei;Liu, Fengde;Li, Jian
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.387-389
    • /
    • 2003
  • Rational function model (RFM) is a universal sensor model for remote sensing image restitution. It is able to substitute for models of all known sensors. In this paper, RFM generation by CCD linear image models is described in detail. A principle of RFM-based 3D reconstruction and its implementation in JX4 DPW is also described. Experiments using IKONOS and SPOT5 images are carried out on JX4 DPW. Results show that RFM generated is feasible for photogrammetric restitution of CCD linear images.

  • PDF

The Evaluations of Sensor Models for Push-broom Satellite Sensor

  • Lee, Suk-Kun;Chang, Hoon
    • Korean Journal of Geomatics
    • /
    • v.4 no.1
    • /
    • pp.31-37
    • /
    • 2004
  • The aim of this research is comparing the existing approximation models (e.g. Affine Transformation and Direct Linear Transformation) with Rational Function Model as a substitute of rigorous sensor model of linear array scanner, especially push-broom sensor. To do so, this research investigates the mathematical model of each approximation method. This is followed by the assessments of accuracy of transformation from object space to image space by using simulated data generated by collinearity equations which incorporate or depict the physical aspects of linear array sensor.

  • PDF