• Title/Summary/Keyword: Ratio of ratios

Search Result 6,315, Processing Time 0.038 seconds

Financial Ratio Analysis of the Textile and Apparel Industries

  • Jung, Hyun-Ju;Hwang, Choon-Sup
    • Journal of Fashion Business
    • /
    • v.15 no.3
    • /
    • pp.125-141
    • /
    • 2011
  • This paper is to focus the financial ratio analysis of the Korean textile and apparel companies due to fast changing domestic industry. Financial ratios are playing a pivotal role in management analysis to assess the present conditions to predict the future. Subjects are belonging to textile and apparel manufacturers based on Firm Classification Standard while registered as securities listed-firms or Kosdaq-listed firms under the Electronic Notification System of Korean Banking Supervisory Authority. 41 companies' data have been analyzed including 17 apparel companies and 24 textile companies. 14 representative financial ratios are analyzed. In this paper, financial ratios can be classified into four categories as follows: stability ratios, profitability ratios, growth ratios and activity ratios. The independent t-test was performed using SPSS 18 for a 10 year simple arithmetic average. The following conclusion has reached regarding aspects of management conditions and performances. When compared the ratios indicating stability, textile and apparel companies did not show much difference in debt ratio and the ratio of earning to interests. However, when compared the profitability ratios measuring the ability to produce incomes, apparel companies showed higher ratios than textile companies. Thus it is important to recognize financial characteristics of each industry.

Analysis of Heat Quantity in CNG Direct Injection Bomb(1) : Homogeneous Charge (CNG 직접분사식 연소기에서의 열량해석(1) :균질급기)

  • 최승환;전충환;장영준
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.2
    • /
    • pp.17-23
    • /
    • 2004
  • A cylindrical constant volume combustion bomb is used to investigate the combustion characteristics and to analyze the heat quantity of homogeneous charge methane-air mixture under various initial pressures, excess air ratios and ignition times. As the overall pressure increase, the values of maximum combustion pressure, maximum heat release rate and cumulative heat release have been increased. But it is not very meaningful to compare with some values such as maximum combustion pressure, maximum heat release rate and cumulative heat release for different overall pressure due to the different heat energy of supplied fuel. So the each value is needed to be compared with normalized value, which is divided by the entered fuel energy. To analyze the heat quantity, some definitions including the CHR ratio, the UHC ratio and the HL ratio are needed and are calculated. As the overall pressure increase, the CHR ratios and the UHC ratios have been decreased, while the HL ratios have been increased. The CHR ratio of 300 ms has the higher value than that of 10000ms, and the HL ratios of 300 ms have a lower value.

Influence of Initial Molar Ratios on the Performance of Low Molar Ratio Urea-Formaldehyde Resin Adhesives

  • LUBIS, Muhammad Adly Rahandi;PARK, Byung-Dae
    • Journal of the Korean Wood Science and Technology
    • /
    • v.48 no.2
    • /
    • pp.136-153
    • /
    • 2020
  • In this paper, the influence of initial formaldehyde/urea (F/U) molar ratios on the performance of low molar ratio (1.0) urea-formaldehyde (UF) resin adhesives has been investigated. Two initial F/U molar ratios, i.e., the first and second initial molar ratios were used for the alkaline addition reaction. Three levels of the first initial F/U molar ratios (2.0, 3.0, and 4.0) and two levels of the second initial molar ratios (2.0 and 1.7) were employed to prepare a total of six UF resins with an identical final molar ratio (1.0). The basis properties, functional groups, molecular weight, crystallinity, and thermal curing properties of the UF resins were characterized in detail. Higher levels (3.0 and 4.0) of the first initial F/U molar ratio provided the UF resins with better properties (non-volatile solids content, viscosity, gelation time, pH, and specific gravity) than those of the resins prepared with the conventional level F/U molar ratio of 2.0. Statistical analysis suggested that combining the first and second initial molar ratio of 4.0 with 1.7 would result in UF resins with greater adhesion strength and lower formaldehyde emission than those of the resins prepared with other molar ratios. The results showed that higher levels of the first initial molar ratio resulted in a more branched structure, as indicated by GPC, FTIR, DSC, XRD, and greater adhesion strength than those of the other UF resins with an identical final molar ratio of 1.0.

Cementing Efficiency of Fly-ash in Mortar Matrix According to Binder-Water Ratio and Fly-ash Replacement Ratio

  • Cho, Hong-Bum;Jee, Nam-Yong
    • Journal of the Korea Institute of Building Construction
    • /
    • v.12 no.2
    • /
    • pp.194-202
    • /
    • 2012
  • This paper predicts the cementing efficiency of fly-ash(FA) based on mortar test considering binder-water ratio and FA replacement ratio as experimental variables. The cementing efficiency prediction model proposed by statistical analysis enables us to estimate the value according to the binder-water ratio and FA replacement ratio of matrix. When FA replacement ratio is the same, the lower the binder-water ratio, the higher the estimated cementing efficiency. There are significant differences in the values according to binder-water ratio at FA replacement ratios of 15% or less, but there are almost no differences when FA replacement ratio is more than 15%. As the binder-water ratio increases, the variations in the values according to FA replacement ratio are great at FA replacement ratios of 15% or less. As the FA replacement ratios increase, the values increase for FA replacement ratios of 15% or less, but decrease for more than 15%. The values range from -0.71 to 1.24 at binder-water ratio of 1.67-2.86 and FA replacement ratio of 0-70%. The RMSE of the 28-day compressive strength predicted by modified water-cement ratio is 2.2 MPa. The values can be trusted, as there is good agreement between predicted strength and experimental strength.

Liquefaction Behaviour of Saturated Silty Sand Under Monotonic Loading Conditions (정적하중 상태에서 포화된 실트질 모래의 액상화 거동)

  • Lee Dal-Won
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.48 no.4
    • /
    • pp.67-74
    • /
    • 2006
  • This study was carried out to investigate the liquefaction behaviour of saturated silty sand under monotonic loading conditions. The undrained soil tests were conducted using a modified triaxial cell and specimens were prepared using the moisture tamping method. Undrained triaxial compression tests were performed at different confining pressures, void ratios and overconsolidation ratios and the samples were sheared to axial strains of about 20% to obtain monotonic loading conditions. It is shown that increasing confining pressures, void ratios and overconsoildation ratios increases the deviator stress, but it has no effect on increasing the dilatant tendencies. It is shown that complete static liquefaction was observed regardless of increases in the confining pressure, void ratio and overconsolidation ratio. Therefore, the confining pressure, void ratio and overconsoildation ratio does not provide significant effects on the liquefaction resistance of the silty sand. The presence of fines in the soil was shown to greatly increase the potential for static liquefaction and creates a particle structure with high compressibility for all cases.

Critical financial variation of ratios between healthy and workout construction firms

  • Im, Haekyung;Choi, Jaehyun
    • International conference on construction engineering and project management
    • /
    • 2015.10a
    • /
    • pp.354-356
    • /
    • 2015
  • As domestic recession has had an adverse impact on many Korean companies in Korea, financial soundness has become a critical issues. It is essential to identify financial risk factors to prevent workout as well as to improve the financial condition of domestic construction companies. Therefore, this study derived important management indicators and the financial ratios that belong to each indicator through a comparative analysis between healthy companies and workout companies with financial statement. As a consequence, key financial ratios are derived into 3 of 25 ratios; Equity Ratio in stability indicator, Total Asset Turnover Ratio in activity indicator, and Labor Equipment Ratio in productivity indicator. So, Korean construction firms are required close monitoring these critical financial ratios indicating variation between construction companies which have opposing statuses in finance in order to keep sound financial condition and increase productivity.

  • PDF

Effect of Embedment Depth of Footing on Behavior of Compensated Foundation (기초의 근입깊이가 보상기초의 거동에 미치는 영향)

  • Lee, Seung-Hyun;Han, Jin-Tae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.2
    • /
    • pp.1477-1482
    • /
    • 2015
  • In order to find out the effect of embedment ratio on behavior compensated foundation, numerical analyses were performed. Bearing capacity ratios obtained from numerical analyses were greater than those obtained from theoretical equations and it could be seen that the bearing capacity ratio was proportional to the embedment ratio with only exception of the case of square footing in which bearing capacity ratio was increased rapidly with the embedment ratio. For the case of strip footing on sand, the bearing capacity ratios obtained from the numerical analyses and Meyerhof equation were similar with each other and magnitudes of those were as much as square of the embedment ratio but the bearing capacity ratios were little affected by the embedment ratios for the case of strip footing on clay. It can be said that the bearing capacity ratios obtained from the square footing are greater than those obtained from the strip footing. According to the numerical analysis, values of settlement ratios which correspond to the embedment ratio of one were about 0.4 and settlement ratios were decreased with increase of the embedment ratios. Settlement ratios of the loose sand were smaller than those of the dense sand and the clay.

Effects of parameters of a linear dynamic vibration absorber on the vibrational characteristics of damped vibrational systems (선형동흡진기의 매개변수가 감쇠진동계의 진동특성에 미치는 영향)

  • Yoon, Jang-Sang;Lee, Yang-U;Song, Chang-Seop
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.6 no.4
    • /
    • pp.136-144
    • /
    • 1989
  • This paper presents the vibrational characteristics of linear damped vibrational systems with a linear dynamic absorber. The amplitude ratios of main vibrational system are derived from the equation of motion for the system, and optimal natural frequency ratio and damping ratio of dynamic absorber are obtained by computer simu- lation, which minimize the amplitude ratio of main vibrational system for the whole range of the frequency ratio. And, the effects of the parameters on the amplitude ratios are investigated. As the results, the effect of the natural frequency ratio on the amplitude ratio of main vibrational system is more important than that of the damping ratio of dynamic absorber as damping ratio of main vibrational system becomes larger. For the case of large damping ration of main vibrational system becomes larger. For the case of large damping ratio of main vibration system, the amplitude ratios are not decreased dramationally in spite of inoreasing mass ratio.

  • PDF

The Fundamental Properties of Alkali-Activated Slag Cement (AASC) Mortar with Different Water-Binder Ratios and Fine Aggregate-Binder Ratios (물-결합재 비와 잔골재-결합재 비에 따른 알칼리 활성화 슬래그 모르타르의 기초특성)

  • Kim, Tae-Wan;Hahm, Hyung-Gil;Lee, Seong-Haeng;Eom, Jang-Sub
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.17 no.5
    • /
    • pp.77-86
    • /
    • 2013
  • This study investigates the fundamental properties of the water-binder (W/B) ratio and fine aggregate-binder (F/B) ratio in the alkali-activated slag cement (AASC) mortar. The W/B ratios are 0.35, 0.40, 0.45, and 0.50, respectively. And then the F/B ratios varied between 1.00 and 3.00 at a constant increment of 0.25. The alkali activator was an 2M and 4M NaOH. The measured mechanical properties were compared, flow, compressive strength, absorption, ultra sonic velocity, and dry shrinkage. The flow, compressive strength, absorption, ultra sonic velocity and dry shrinkage decreased with increases W/B ratio. The compressive strength decreases with increase F/B ratio at same W/B ratio. Also, at certain value of F/B ratio significant increase in strength is observed. And S2 (river sand 2) had lower physical properties than S1 (river sand 1) due to the fineness modulus. The results of experiments indicated that the mechanical properties of AASC depended on the W/B ratio and F/B ratio. The optimum range for W/B ratios and F/B ratios of AASC is suggested that the F/B ratios by 1.75~2.50 at each W/B ratios. Moreover, the W/(B+F) ratios between 0.13 and 0.14 had a beneficial effect on the design of AASC mortar.

A technique to avoid aspect-ratio locking in QUAD8 element for extremely large aspect-ratios

  • Rajendran, S.
    • Structural Engineering and Mechanics
    • /
    • v.37 no.6
    • /
    • pp.633-648
    • /
    • 2011
  • This paper investigates the aspect-ratio locking of the isoparametric 8-node quadrilateral (QUAD8) element. An important finding is that, if finite element solution is carried out with in exact arithmetic (i.e., with no truncation and round off errors), the locking tendency of the element is completely avoided even for aspect-ratios as high as 100000. The current finite element codes mostly use floating point arithmetic. Thus, they can only avoid this locking for aspect-ratios up to 100 or 1000. A novel method is proposed in the paper to avoid aspect-ratio locking in floating point computations. In this method, the offending terms of the strain-displacement matrix (i.e., $\mathbf{B}$-matrix) are multiplied by suitable scaling factors to avoid ill-conditioning of stiffness matrix. Numerical examples are presented to demonstrate the efficacy of the method. The examples reveal that aspect-ratio locking is avoided even for aspect-ratios as high as 100000.