• Title/Summary/Keyword: Ratio algorithm

Search Result 3,099, Processing Time 0.027 seconds

A simple damper optimization algorithm for both target added damping ratio and interstorey drift ratio

  • Aydin, Ersin
    • Earthquakes and Structures
    • /
    • v.5 no.1
    • /
    • pp.83-109
    • /
    • 2013
  • A simple damper optimization method is proposed to find optimal damper allocation for shear buildings under both target added damping ratio and interstorey drift ratio (IDR). The damping coefficients of added dampers are considered as design variables. The cost, which is defined as the sum of damping coefficient of added dampers, is minimized under a target added damping ratio and the upper and the lower constraint of the design variables. In the first stage of proposed algorithm, Simulated Annealing, Nelder Mead and Differential Evolution numerical algorithms are used to solve the proposed optimization problem. The candidate optimal design obtained in the first stage is tested in terms of the IDRs using linear time history analyses for a design earthquake in the second stage. If all IDRs are below the allowable level, iteration of the algorithm is stopped; otherwise, the iteration continues increasing the target damping ratio. By this way, a structural response IDR is also taken into consideration using a snap-back test. In this study, the effects of the selection of upper limit for added dampers, the storey mass distribution and the storey stiffness distribution are all investigated in terms of damper distributions, cost function, added damping ratio and IDRs for 6-storey shear building models. The results of the proposed method are compared with two existing methods in the literature. Optimal designs are also compared with uniform designs according to both IDRs and added damping ratios. The numerical results show that the proposed damper optimization method is easy to apply and is efficient to find optimal damper distribution for a target damping ratio and allowable IDR value.

Design and Performance Measurement of a Genetic Algorithm-based Group Classification Method : The Case of Bond Rating (유전 알고리듬 기반 집단분류기법의 개발과 성과평가 : 채권등급 평가를 중심으로)

  • Min, Jae-H.;Jeong, Chul-Woo
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.32 no.1
    • /
    • pp.61-75
    • /
    • 2007
  • The purpose of this paper is to develop a new group classification method based on genetic algorithm and to com-pare its prediction performance with those of existing methods in the area of bond rating. To serve this purpose, we conduct various experiments with pilot and general models. Specifically, we first conduct experiments employing two pilot models : the one searching for the cluster center of each group and the other one searching for both the cluster center and the attribute weights in order to maximize classification accuracy. The results from the pilot experiments show that the performance of the latter in terms of classification accuracy ratio is higher than that of the former which provides the rationale of searching for both the cluster center of each group and the attribute weights to improve classification accuracy. With this lesson in mind, we design two generalized models employing genetic algorithm : the one is to maximize the classification accuracy and the other one is to minimize the total misclassification cost. We compare the performance of these two models with those of existing statistical and artificial intelligent models such as MDA, ANN, and Decision Tree, and conclude that the genetic algorithm-based group classification method that we propose in this paper significantly outperforms the other methods in respect of classification accuracy ratio as well as misclassification cost.

The Validation of Band Ratio Algorithm for Estimation of Transparency of Coastal Area (연안해역의 투명도 추정을 위한 밴드비율 알고리듬 검증)

  • Jeong, Jong-Chul
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.4 no.1
    • /
    • pp.27-33
    • /
    • 2001
  • SDD(Secchi disk depth) algorithm were composed of SeaWiFS bands combination using in-water optical data sets obtained Lake Sihwa, Kyungki Bay, Chunsu Bay, and Chinhae Bay. SDD algorithm were compared with in-situ data. Reflectance band ratio, $R_{rs}$(490/665) had the highest correlation($R^2$=0.8188) with in-situ data. For in-water algorithm applied to satellite data, reflectance band ratios of Landsat TM data were calculated. However, the results of applied Landsat TM had the low correlation, these reason were discussed in this paper.

  • PDF

Dynamic Probabilistic Caching Algorithm with Content Priorities for Content-Centric Networks

  • Sirichotedumrong, Warit;Kumwilaisak, Wuttipong;Tarnoi, Saran;Thatphitthukkul, Nattanun
    • ETRI Journal
    • /
    • v.39 no.5
    • /
    • pp.695-706
    • /
    • 2017
  • This paper presents a caching algorithm that offers better reconstructed data quality to the requesters than a probabilistic caching scheme while maintaining comparable network performance. It decides whether an incoming data packet must be cached based on the dynamic caching probability, which is adjusted according to the priorities of content carried by the data packet, the uncertainty of content popularities, and the records of cache events in the router. The adaptation of caching probability depends on the priorities of content, the multiplication factor adaptation, and the addition factor adaptation. The multiplication factor adaptation is computed from an instantaneous cache-hit ratio, whereas the addition factor adaptation relies on a multiplication factor, popularities of requested contents, a cache-hit ratio, and a cache-miss ratio. We evaluate the performance of the caching algorithm by comparing it with previous caching schemes in network simulation. The simulation results indicate that our proposed caching algorithm surpasses previous schemes in terms of data quality and is comparable in terms of network performance.

Online Deadline Scheduling of Equal Length Jobs with More Machines (추가 머신들을 이용한 동일 길이 작업들의 온라인 마감시간 스케줄링)

  • Kim, Jae-Hoon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.8
    • /
    • pp.1934-1939
    • /
    • 2013
  • In this paper, we consider the online scheduling problem of jobs with deadlines. The jobs arrive over time and the scheduling algorithm has no information about the arriving jobs in advance. The jobs have the processing time of the equal length and the goal of the scheduling algorithm is to maximize the number of jobs completed in their deadlines. The performance of the online algorithm is compared with that of the optimal algorithm which has the full information about all the jobs. The raio of the two performances is called the competitive ratio. In general, the ratio is unbouned. So the case that the online algorithm can have more resources than the optimal algorithm is considered, which is called the resource augmentation analysis. In this paper, the online algorithm have more machines. We show that the online algorithm can have the same performance as the optimal algorithm.

Tag Anti-Collision Algorithms in Passive and Semi-passive RFID Systems -Part I : Adjustable Framed Q Algorithm and Grouping Method by using QueryAdjust Command- (수동형/반능동형 RFID 시스템의 태그 충돌 방지 알고리즘 -Part I : QueryAdjust 명령어를 이용한 AFQ 알고리즘과 Grouping에 의한 성능개선-)

  • Song, In-Chan;Fan, Xiao;Chang, Kyung-Hi;Shin, Dong-Beom;Lee, Heyung-Sub
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.8A
    • /
    • pp.794-804
    • /
    • 2008
  • In this paper, we analyze the performance of probabilistic slotted anti-collision algorithm used in EPCglobal Class-1 Generation-2 (Gen2). To increase throughput and system efficiency, and to decrease tag identification time and collision ratio, we propose new tag anti-collision algorithms, which are FAFQ (fired adjustable flamed Q) algorithm and AAFQ (adaptive adjustable framed Q) algorithm, by using QueryAdjust command. We also propose grouping method based on Gen2 to improve the efficiency of tag identification. The simulation results show that all the proposed algorithms outperform Q algorithm, and AAFQ algorithm performs the best. That is, AAFQ has an increment of 5% of system efficiency and a decrement of 4.5% of collision ratio. For FAFQ and AAFQ algorithm, the performance of grouping method is similar to that of ungrouping method. However, for Q algorithm in Gen2, grouping method can increase throughput and system efficiency, and decrease tag identification time and collision ratio compared with ungrouping method.

A Study on Implemetation of Non-invasive Blood Pressure (비침습적 혈압 측정 시스템 구현에 관한 연구)

  • 노영아;이종수;김영길
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2000.10a
    • /
    • pp.451-454
    • /
    • 2000
  • Invasive methode and Non-invasive methode are used in blood pressure measurement. The Invasive methode can Set the correct measured blood pressure but, it has patient feels uncomfortable. So most of cases use Non-invasive methode. The Oscillometric method is commonly apply to modem electric sphygmomanometer and using various algorithm. In this paper describe about a algorithm it control and to determinate the cuff pressure, and filtering that data for measure the blood pressure. The communicating with personal computer can pressure deflation is by Solenoid valve and it uses RS-232 system in packet communication. The main using algorithm for blood pressure measurements are maximum amplitude algorithm and oscillometric algorithm. MAA(maximum amplitude algorithm) has various measured oscillation it depend on patient's age, height, weight and arm circumference size. In this paper, 1 studied the various measured oscillation apply to characteristic ratio and can get the result of systolic blood pressure, diastolic blood pressure, mean blood pressure. It was not used same ratio to measuring oscillation. In the MAA(maximum amplitude algorithm), we hope for reduce the difference with the real blood pressure and the measured blood pressure, when it applied with various specific ratio.

  • PDF

A Design of the Safe Zone Managing Algorithm with the Variable Interval Sensing Scheme for the Sensor Networks

  • Cha, Hyun-Chul
    • Journal of the Korea Society of Computer and Information
    • /
    • v.21 no.10
    • /
    • pp.29-35
    • /
    • 2016
  • In this paper, we propose a scheme to prolong the lifetime of the sensor network by reducing the power consumption of the sensor node. The proposed algorithm reduces the number of transmissions and sensing at the application layer. We combine the VIS scheme with the MSZ algorithm and call it as the SZM/VIS algorithm. The actual temperature data was collected using the sensor nodes to assess the performance of the proposed algorithm. The proposed algorithm was implemented through the programming and was evaluated under various setting values. Experimental results show that the SZM/VIS has a slightly improved transmission ratio than that of the MSZ while has the periodic transmission capability like as the MSZ. Also the SZM/VIS can significantly reduces the sensing ratio like that of the VIS. Our algorithm has the advantages of instantaneous, simplicity, small overhead and robustness. Our algorithm has just negligible side effects by controlling the parameter properly depending on the application types. The SZM/VIS algorithm will be able to be used effectively for the applications that need to be managed within a certain range of specific properties, such like crop management.

Damage detection of shear buildings using frequency-change-ratio and model updating algorithm

  • Liang, Yabin;Feng, Qian;Li, Heng;Jiang, Jian
    • Smart Structures and Systems
    • /
    • v.23 no.2
    • /
    • pp.107-122
    • /
    • 2019
  • As one of the most important parameters in structural health monitoring, structural frequency has many advantages, such as convenient to be measured, high precision, and insensitive to noise. In addition, frequency-change-ratio based method had been validated to have the ability to identify the damage occurrence and location. However, building a precise enough finite elemental model (FEM) for the test structure is still a huge challenge for this frequency-change-ratio based damage detection technique. In order to overcome this disadvantage and extend the application for frequencies in structural health monitoring area, a novel method was developed in this paper by combining the cross-model cross-mode (CMCM) model updating algorithm with the frequency-change-ratio based method. At first, assuming the physical parameters, including the element mass and stiffness, of the test structure had been known with a certain value, then an initial to-be-updated model with these assumed parameters was constructed according to the typical mass and stiffness distribution characteristic of shear buildings. After that, this to-be-updated model was updated using CMCM algorithm by combining with the measured frequencies of the actual structure when no damage was introduced. Thus, this updated model was regarded as a representation of the FEM model of actual structure, because their modal information were almost the same. Finally, based on this updated model, the frequency-change-ratio based method can be further proceed to realize the damage detection and localization. In order to verify the effectiveness of the developed method, a four-level shear building was numerically simulated and two actual shear structures, including a three-level shear model and an eight-story frame, were experimentally test in laboratory, and all the test results demonstrate that the developed method can identify the structural damage occurrence and location effectively, even only very limited modal frequencies of the test structure were provided.

A Study on Individual Cylinder Equivalence Ratio Estimation and Control Algorithm for SI Engines (가솔린 엔진의 흡기밸브 리프트 변화에 따른 개별실린더 당량비 추정 및 제어 알고리즘에 관한 연구)

  • Kim, Jun-Soo;Oh, Seung-Suk;Lee, Min-Kwang;SunWoo, Myoung-Ho
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.19 no.5
    • /
    • pp.35-44
    • /
    • 2011
  • In a spark ignition engine, a variable valve lift (VVL) system has been developed for high fuel efficiency and low power loss. However, changes in valve lift cause deviations of cylinder air charge which lead to individual cylinder equivalence ratio maldistribution. In this study, in order to reduce the maldistribution, we propose individual cylinder equivalence ratio estimation and control algorithms. The estimation algorithm calculates the equivalence ratio of each cylinder by using a mathematical engine model which includes air charging, fuel film, exhaust gas, and universal exhaust gas oxygen sensor (UEGO) dynamics at various valve lifts. Based on the results of estimated equivalence ratio, the injection quantity of each cylinder is adjusted to control the individual cylinder equivalence ratio. Estimation and control performance are validated by engine experiments. Experimental results represented that the equivalence ratio maldistribution and variation are decreased by the proposed algorithms.