• Title/Summary/Keyword: Ratio Valve

Search Result 554, Processing Time 0.036 seconds

Diesel Engine Intake Port Analysis Using Reverse-engineering Technique (리버스 엔지니어링을 통한 디젤엔진 흡기포트의 성능 비교)

  • Kim, Chang-Su;Park, Sung-Young
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.23 no.5
    • /
    • pp.502-507
    • /
    • 2015
  • In this paper, we built a three-dimensional model by applying reverse engineering techniques on targeting the intake port of 2900cc class diesel engine before that three-dimensional design technique is applied. The performance of the intake port is predicted and analysed using the computational flow analysis. Flow Coefficient and Swirl Ratio have been analyzed for two intake port models. One is the intake port for the diesel engine with plunger-type fuel system, and the other is for the diesel engine with CRDI fuel system. Computational result shows that the Flow Coefficient of the intake port with CRDI fuel system is increased upto 10 percentage compared with that with plunger-type. Also, the intake port with plunger-type has high Swirl Ratio at high valve lift, and the intake port with CRDI fuel system has high Swirl Ratio at relatively low valve lift. It is believed that because of high performance of the fuel injector, the intake port with CRDI fuel system is designed for more air amount and not much swirl flow at high valve lift. However, high swirl flow is required at low valve lift for initial fuel and air mixing. The result of this study may be useful for the re-manufacturing industry of automotive parts.

MAGNETORESISTANCE OF NiFeCo/Cu/NiFeCo/FeMn MULTILAYERED THIN FILMS WITH LOW SATURATION FIELD

  • Bae, S.T.;Min, K.I.;Shin, K.H.;Kim, J.Y.
    • Journal of the Korean Magnetics Society
    • /
    • v.5 no.5
    • /
    • pp.570-574
    • /
    • 1995
  • Magnetoresistance of NiFeCo/Cu/NiFeCo/FeMn uncoupled exchange biased sandwiches has been studied. The magnetoresistance change ratio, ${\Delta}R/R_{s}$ showed 4.1 % at a saturation field as low as 11 Oe in $Si/Ti(50\;{\AA})/NiFeCo(70\;{\AA})/Cu(23\;{\AA})/NiFeCo(70\;{\AA})/FeMn(150\;{\AA})/Cu(50\;{\AA})$ spin valve structure. In this system, the magnetoresistance was affected by interlayer material and thickness. When Ti and Cu were used as the interlayer material in this structure, maximum magnetoresistance change ratio were 0.32 % and 4.1 %, respectively. 6.1 % MR ratio was obtained in $Si/Ti(50\;{\AA})/NiFeCo(70\;{\AA})/Cu(15\;{\AA})/NiFeCo(70\;{\AA})/FeMn(150\;{\AA})/Cu(50\;{\AA})$ spin valve structure. The magnetoresistance change ratio decreased monotonically as the interlayer thickness increased. It was found that the exchange bias field exerted by FeMn layer to the adjacent NiFeCo layer was ~25 Oe, far smaller than that reported in NiFe/Cu/NiFe/FeMn spin valve structure(Dieny et. al., ~400 Oe). The relationship between the film texture and exchange anisotropy ha been examined for spin valve structures with Ti, Cu, or non-buffer layer.

  • PDF

A Study on the Dynamic Characteristics of ABS Hydraulic Control Valve (ABS 유압 제어 밸브의 동 특성 해석에 관한 연구)

  • 김병우;송창섭
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.9 no.4
    • /
    • pp.121-130
    • /
    • 2001
  • For the purpose of optimal control of anti-lock brake systems, precise dynamic characteristics analysis of hydraulic modulator, especially solenoid valve is necessary. However, most of researches so far have dealt with dynamic characteristic analysis of valve itself, and the results have been restrictively applied to the actual ABS modulator, where hydraulic pressure is acting. In this study, mathmatical modeling and experimental analysis were peformed in order to evaluate the valve dynamic characteristics when the hydraulic pressure is applied. High pressure on the master cylinder that affects on the valve dynamic characteristics have been analyzed quantitatively, and performance improvement methods have been suggested through parameter study. Consequently, results of solenoid valve dynamic characteristics analysis derived in the study can be utilized as criteria for the optimal control of anti-lock brake systems.

  • PDF

A Study on Development of High Pressure Hydrogen Injection Valve (직접분사식 고압 수소분사밸브의 개발에 관한 연구)

  • Kim, Yun-Young;Ahn, Jong-Yun;Lee, Jong-Tai
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.11 no.3
    • /
    • pp.107-117
    • /
    • 2000
  • Ball poppet valve type high pressure hydrogen injection valve actuated by solenoid has been developed for the feasibility of practical use of hydrogen fueled engine with direct injection and the precise control of fuel injection ratio in hydrogen fueled engine with dual injection. The gas-tightness of ball poppet injection valve is improved by the introduction of ball-shaped valve face, valve end typed spherical pair, and valve stem with rotating blade. Ball poppet valve is mainly closed by differential pressure due to the area difference between valve fillet and pressure piston. So, it can be operated by solenoid actuator with small driving force. From the evaluation of ball poppet injection valve, it was found that the gastightness and controlment of this injection valve are better than those of injection valve had been developed before.

  • PDF

An Experimental Study on the Characteristics of the In-cylinder Eccentricity Swirl Flow with Intake Port Shapes in a 4 Valve Diesel Engine (4밸브 디젤기관의 흡기포트 형상에 따른 실린더 내 편심 선회유동 특성에 관한 실험적 연구)

  • 이지근;김덕진;강신재;노병준
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.6 no.1
    • /
    • pp.59-72
    • /
    • 1998
  • This experimental study was carried out to investigate the characteristics of the in-cylinder eccentricity swirl flow generated by a 4 valve cylinder head with a tangential and a helical intake port. the measurements of the in-cylinder velocity field have been made by a two-channel LDA system. The mean flow coefficient(Cf(meam)), swirl ratio(Rs) and mass flowrate with valve eccentricity ratios and an intake port partition between the two intake ports were measured in the steady flow test fig using the ISM(impulse swirl meter). The experimental results indicated that the mass flowrate through the tangential intake port was 19% and 7.7% more than that of the helical intake port in case of with and without intake port partition respectively. There was a tendency to be a single rotation flow in swirl flow fields formed by a 4 valve cylinder head because of the interaction between the two intake ports. As the intake port partition was not set between flow coefficient(Cf(mean)) was 7.35%.

Observation of carbon sedimentation effect and soot concentration in diesel engine after intake valve modification

  • Mahmud, Md. Iqbal;Cho, Haeng Muk
    • Journal of Energy Engineering
    • /
    • v.21 no.4
    • /
    • pp.378-384
    • /
    • 2012
  • Higher compression ratio is required in diesel engine to ignite the fuel that leads to better efficiency. For complete combustion inside the cylinder it is important to ensure the clean air flow with free of debris and as cool as possible. In this manner, modification of intake valve arrangements is taken in to consideration importantly. In this paper, the intake valve arrangements are modified with newly designed valve mixer. It causes swirl flow of air through the intake port that mixing with the fuel followed by complete combustion. The use of valve mixer reduces the carbon sediment formation on valve fillet and its face area as the carbon particles gradually take place on it after certain running period. It therefore, helps to increase the valve lifetime. And at the same time it reduces the exhaust elements i.e. soot from the automobiles to a significant level.

Measurement of Porcine Aortic and Pulmonary Valve Geometry and Design for Implantable Tissue Valve (돼지 대동맥, 폐동맥의 근위부 기하학적 구조 측정을 통한 판막 구조 수치의 계량화와 판막 도안에 관한 연구)

  • Park, Sung-Joon;Kim, Yong-Jin;Nam, Jin-Hae;Kim, Soo-Hwan;Lee, Chang-Ha;Lim, Hong-Gook
    • Journal of Chest Surgery
    • /
    • v.43 no.6
    • /
    • pp.602-613
    • /
    • 2010
  • Background: As life expectancy has been increased, the cardiac valve disease has been increased. In past, mechanical valve for valve replacement surgery was used widely, but it has many weaknesses, such as hemorrhage, teratogenic effect caused by warfarin, acute mechanical failure, taking warfarin during life, etc. So, the tissue valve is used widely and researches for durability of tissue valve are in progress. Tissue valves being used are all imported in Korea, and there is a lack of information on its geometry and design. So, we studied the geometry of porcine aortic and pulmonary valve, and tried to suggest theoretical basis for making the aortic and pulmonary valve. Material and Method: We harvested aortic and pulmonary valves of 25 pigs and measured the geometry of valve at fresh and glutaraldehyde (GA) fixed state. In each group, we measured the diameter of the base, diameter of commissure, valve height, commissural height, etc. Also, for making implantable porcine and bovine pericardial valve, we designed the valve stent form, thickness, height, and leaflet size, form, thickness by different size of valve. Result: The aortic and pulmonary valve geometry and ratio were measured in each group. The right coronary cusp of aortic valve and right facing cusp of pulmonary valve was bigger than other cusps and non coronary cusp was smaller than others (RCC: NCC : LCC=1 : 0.88 : 1). Valve height was correlated to the leaflet size. We designed the outer diameter of stented porcine aortic valve from 19 mm to 33 mm and designed stent height and width, using previous measured ratio of each structure, stent thickness, working thickness (for making valve). Also, we designed the size of stent and form for stented bovine pericardial valve, considering diameter of valve, leaflet length, height and leaflet minimum coaptation area. Conclusion: By measuring of 25 pig's aortic and pulmonary valve geometry and ratio, we can make theoretical basis for making implantable stented porcine valve and bovine pericardial valve in various size. After making implantable valve using these data, it is necessary to do in vivo and in vitro researches, furthermore.

Injection volume control of carboxy-gun using a solenoid valve (솔레노이드 밸브를 이용한 카복시 건의 주입량 제어)

  • Tak, Tae-Oh;Han, Nam-Gyu;Shin, Young-Kyu
    • Journal of Industrial Technology
    • /
    • v.32 no.A
    • /
    • pp.65-70
    • /
    • 2012
  • Carboxy-guns are used for rapid and precise injection of $CO_2$ gas to the target skin area using external power source. In the design of carboxy-gun, the most important thing is how to precisely control injection volume of $CO_2$ gas. This paper deals with the control scheme of injection volume of carboxy-gun using solenoid valve. First the amount of volume that passes through the solenoid valve under on-off time ratio control is estimated based on the assumption of compressible gas flow. The flow rate of gas is experimentally measured under the varying pressure of the gas reservoir. Two results showed good correlation to each other, thus demonstrating the validity of the volume control strategy.

  • PDF

A Study on the Frequency Response Characteristics of High Response Flow Control Servo Valve (고 응답 유량제어 서보밸브의 주파수 응답특성에 관한 연구)

  • 서종수;신유식;지명국;전영흥;정효민;정한식
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.15 no.6
    • /
    • pp.480-488
    • /
    • 2003
  • The purpose of this research Is to derive the principal design parameters governing the dynamic characteristics of the high response flow control servo valve. For this purpose, a numerical modeling of the servo valve system and a parameter sensitivity analysis to a frequency response characteristics was peformed. As a result of these analysis, a basis for improvement of a dynamic characteristics of servo valve was arranged.

Effects of Swirl Ratio on Combustion Characteristics in DI Diesel Engine (스월비 변화가 직접분사식 디젤기관의 연소특성에 미치는 영향)

  • Kwon, Soon-Ik
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.6 no.2
    • /
    • pp.149-153
    • /
    • 2003
  • Besides the fuel spray behavior and combustion chamber shape. an air motion has a key role on exhaust gas emission and performance in a DI diesel engine. A swirl ratio represents the ratio of the intake swirl velocity to the engine speed. The main purpose in this work is to investigate the effects of the swirl ratio to the combustion characteristics. A shroud valve machined to change the swirl ratio. Test was carry out by changing the engine speed, nozzle diameter and swirl ratio in a single cylinder diesel engine. From this study, the optimized combustion was found at swirl ratio 2.7. And it was also found that the increasing the maximum cylinder pressure with an increasing swirl ratio lead to decrease a smoke and to increase NOx.

  • PDF