• Title/Summary/Keyword: Ratio Valve

Search Result 562, Processing Time 0.029 seconds

An Experimental Study on Phenomenon of Backfire in H2 HCCI Engine (예혼합 압축착화 수소기관의 역화현상에 관한 실험적 연구)

  • Lee, Jongmin;Lee, Jonggoo;Lee, Kwangju;Lee, Jongtai
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.26 no.1
    • /
    • pp.28-34
    • /
    • 2015
  • HCCI (Homogeneous Charged Compression Ignition) hydrogen engine has relatively narrower operation range caused by backfire occurrence due to the rapid pressure rising by using higher compression ratio and significant reaction velocity. In this study, to grasp of backfire process and characteristic in the HCCI research hydrogen engine, in-cylinder pressure, intake pressure and backfire limit range are analyzed with compression ratio and intake valve open timing, experimentally. As the result, it is observed that knock is occurred just before backfire occurrence in HCCI hydrogen engine but not spark igntion type, this phenomenon is always the same for the above variables. Also backfire limit range are expanded up to 50% for the more retarding intake valve open timing in this operating conditions.

A Study on the Automatic Measurement of Swirl Generated fi:om Intake Port of Engine Cylinder Head Using an I-IEEE-1394 Camera and Step Motors (IEEE-1394카메라와 스텝모터를 이용한 엔진 실린더헤드의 흡기포트 스월 측정 자동화에 관한 연구)

  • Lee Choong-Hoon
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.14 no.6
    • /
    • pp.88-94
    • /
    • 2005
  • A swirl ratio of a charge in the cylinder could be calculated by measuring both the rotary speed of paddle and the intake air flow rate in the swirl measurement apparatus fur several positions of valve lift. The automation of the swirl ratio measurement for a cylinder head is achieved by controlling both the valve lift of cylinder head and a suction pressure of the surge tank, instead of controlling them manually. PID control of the surge tank pressure and positioning a valve lift of the cylinder head are also achieved by using two step motors, respectively. Rotating speed of a paddle are measured using an optical sensor and a counter. Flow rate are measured from ISA 1932 flow nozzle by reading a differential pressure gauge position using IEEE-1394 camera. Time to measure the swirl ratio for a port in the cylinder head is drastically reduced from an hour to 3 minutes by automation control of the apparatus.

Acoustic Valve Leak Diagnosis and Monitoring System for Power Plant Valves (발전용 밸브누설 음향 진단 및 감시시스템)

  • Lee, Sang-Guk
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.04a
    • /
    • pp.425-430
    • /
    • 2008
  • To verify the system performance of portable AE leak diagnosis system which can measure with moving conditions, AE activities such as RMS voltage level, AE signal trend, leak rate degree according to AE database, FFT spectrum were measured during operation on total 11 valves of the secondary system in nuclear power plant. AE activities were recorded and analyzed from various operating conditions including different temperature, type of valve, pressure difference, valve size and fluid. The results of this field study are utilized to select the type of sensors, the frequency band for filtering and thereby to improve the signal-to-noise ratio for diagnosis for diagnosis or monitoring of valves in operation. As the final result of application study above, portable type leak diagnosis system by AE was developed. The outcome of the study can be definitely applied as a means of the diagnosis or monitoring system for energy saving and prevention of accident for power plant valve. The purpose of this study is to verify availability of the acoustic emission in-situ monitoring method to the internal leak and operating conditions of the major valves at nuclear power plants. In this study, acoustic emission tests are performed when the pressurized temperature water and steam flowed through glove valve(main steam dump valve) and check valve(main steam outlet pump check valve) on the normal size of 12 and 18 ". The valve internal leak monitoring system for practical field was designed. The acoustic emission method was applied to the valves at the site, and the background noise was measured for the abnormal plant condition. To improve the reliability, a judgment of leak on the system was used various factors which are AE parameters, trend analysis, frequency analysis, voltage analysis and amplitude analysis of acoustic signal emitted from the valve operating condition internal leak.

  • PDF

Application of Lookup Table Technique with PID Controller for East Flow Ratio Response

  • Klaynil, P.;Pannil, P.;Chaikla, A.;Julsereewong, P.;Tirasesth, K.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.504-504
    • /
    • 2000
  • The flow ratio in the industrial process is usually accomplished by using PID controller with series type ratio. But always the large overshoot and a long rise time may be achieved from this conventional control. These problems are involved to the inexact flow ratio control. In order to avoid this poor performance. the paper presents a designing of the two controller modes for the flow ratio plants. This proposed controller combine the lookup table technique and the well-known PID controller to obtain the fast response and low overshoot of flow ratio control. The PID controller mode will be operated when the flow ratio reaches the preset value while the lookup table technique mode is applied for initial operation. The data in tile table is calculated by the valve sizing equation and convened to the valve position control signal. The experimental results show that the transient and steady state responses of the control systems using the proposed technique can be efficiently obtained when compared with tile conventional controller.

  • PDF

A Thermodynamic Analysis on the Performance with turning Diesel Cycle into Diesel-Atkinson Cycle (디젤기관의 아트킨슨 사이클화에 따른 제반성능의 열역학적 해석)

  • 노기철;정양주;이종태
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.5
    • /
    • pp.1-11
    • /
    • 2004
  • In order to recognize thermal efficiency and power improvement in case that diesel cycle is turned into diesel-atkinson cycle, the fuel-air diesel-atkinson cycle considered gas exchange process is analyzed non-dimensionally and thermodynamically. As a result, in case of diesel-atkinson cycle, as expansion ratio is increased, thermal efficiency and mean effective pressure is increased and it has maximum value at Rec=1. When diesel cycle is turned into diesel-atkinson cycle by late intake valve closing timing, thermal efficiency and power is decreased because of the decline of effective compression ratio and intake airflow, but it could be compensated by increase of compression ratio or super-charged. In case compression ratio is compensated, Rec appears 1 around 100$^{\circ}$ ABDC, and it is expected that thermal efficiency is enhanced by 14.3% compared with conventional diesel cycle. In case compression ratio and intake airflow are compensated simultaneously, super-charged pressure is demanded 2.06bar at Rec=1 and it is more efficient when only compression ratio is compensated in the view point of thermal efficiency.

Effects of the Lift Valve Opening Area on Water Hammer Pump Performance and Flow Behavior in the Valve Chamber

  • Saito, Sumio;Dejima, Keita;Takahashi, Masaaki;Hijikata, Gaku;Iwamura, Takuya
    • International Journal of Fluid Machinery and Systems
    • /
    • v.5 no.3
    • /
    • pp.109-116
    • /
    • 2012
  • Water hammer pumps can effectively use the water hammer phenomenon for water pumping. They are capable of providing an effective fluid transport method in regions without a well-developed social infrastructure. The results of experiments examining the effect of the geometric form of water hammer pumps by considering their major dimensions have been reported. However, these conventional studies have not fully evaluated pump performance in terms of pump head and flow rate, common measures of pump performance. The authors have focused on the effects on the pump performance of various geometric form factors in water hammer pumps. The previous study examined how the hydrodynamic characteristics was affected by the inner diameter ratio of the drive and lift pipes and the angle of the drive pipe, basic form factors of water hammer pumps. The previous papers also showed that the behavior of water hammer pump operation could be divided into four characteristic phases. The behavior of temporal changes in valve chamber and air chamber pressures according to the air volume in the air chamber located downstream of the lift valve was also clarified in connection with changes in water hammer pump performance. In addition, the effects on water hammer pump performance of the length of the spring attached to the drain valve and the drain pipe angle, form factors around the drain valve, were examined experimentally. This study focuses on the form of the lift valve, a major component of water hammer pumps, and examines the effects of the size of the lift valve opening area on water hammer pump performance. It also clarifies the behavior of flow in the valve chamber during water hammer pump operation.

Analog active valve control design for non-linear semi-active resetable devices

  • Rodgers, Geoffrey W.;Chase, J. Geoffrey;Corman, Sylvain
    • Smart Structures and Systems
    • /
    • v.19 no.5
    • /
    • pp.487-497
    • /
    • 2017
  • Semi-active devices use the building's own motion to produce resistive forces and are thus strictly dissipative and require little power. Devices that independently control the binary open/closed valve state can enable novel device hysteresis loops that were not previously possible. However, some device hysteresis loops cannot be obtained without active analog valve control allowing slower, controlled release of stored energy, and is presents an ongoing limitation in obtaining the full range of possibilities offered by these devices. This in silico study develops a proportional-derivative feedback control law using a validated nonlinear device model to track an ideal diamond-shaped force-displacement response profile using active analog valve control. It is validated by comparison to the ideal shape for both sinusoidal and random seismic input motions. Structural application specific spectral analysis compares the performance for the non-linear, actively controlled case to those obtained with an ideal, linear model to validate that the potential performance will be retained when considering realistic nonlinear behaviour and the designed valve control approach. Results show tracking of the device force-displacement loop to within 3-5% of the desired ideal curve. Valve delay, rather than control law design, is the primary limiting factor, and analysis indicates a ratio of valve delay to structural period must be 1/10 or smaller to ensure adequate tracking, relating valve performance to structural period and overall device performance under control. Overall, the results show that active analog feedback control of energy release in these devices can significantly increase the range of resetable, valve-controlled semi-active device performance and hysteresis loops, in turn increasing their performance envelop and application space.

Dependence of Magnetoresistance on the Underlayer Thickness for Top-type Spin Valve (Top형 스핀밸브 구조의 Si 기판에서의 하지층 두께에 따른 자기저항 특성 연구)

  • Ko, Hoon;Kim, Sang-Yoon;Kim, Soo-In;Lee, Chang-Woo;Kim, Ji-Won;Jo, Soon-Chul
    • Journal of the Korean Magnetics Society
    • /
    • v.17 no.2
    • /
    • pp.95-98
    • /
    • 2007
  • In this paper, the magnetic properties and the annealing behavior of spin valve structures with Mo(MoN) underlayers were studied for various underlayer thickness. The spin valve structure was Si substrate/Mo(MoN)$(t{\AA})/NiFe(21{\AA})/CoFe(28{\AA})/Cu(22{\AA})/CoFe(18{\AA})/IrMn(65{\AA})/Ta(25 {\AA})$. Mo and MoN films were deposited on Si substrates and their thermal annealing behavior was analyzed. The deposition rate of the MoN thin film was decreased and tile resistivity of the MoN thin films were increased as the $N_2$ gas flow was increased. The variations of MR ratio and magnetic exchange coupling field of spin valve structure were smaller with MoN underlayers than that with Mo underlayers up to thickness of $51{\AA}$. MR ratio of spin valves with Mo underlayers was 2.86% at room temperature and increased up to 2.91 % after annealing at $200^{\circ}C$. Upon annealing at $300^{\circ}C$, the MR ratio decreased about 2.16%. The MR ratio of spin valves structure with MoN underlayers for $N_2$ gas flow 1 sccm was 5.27% at room temperature and increased up to 5.56% after annealing at $200^{\circ}C$. Upon annealing at $300^{\circ}C$, the MR ratio decreased about 4.9%.

Study on the Comparison of Piezoelectric Property of Acoustic Sensor for Valve Leak Diagnosis (밸브누설 진단용 PZT 및 Pb-Free 음향센서의 압전특성 비교 연구)

  • Lee, Sang-Guk;Park, Sung-Keun
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.3383-3388
    • /
    • 2007
  • To compare the sensor performance of AE leak diagnosis system which can measure valve leak conditions, AE activities such as RMS voltage level, AE signal trend, leak rate degree according to AE database, FFT spectrum were measured on valve of the simulated test system for power plant. AE activities were recorded and analyzed from various operating conditions including different temperature, pressure difference, valve size and fluid using both piezoelectric acoustic emission sensor and Pb-Free acoustic emission sensor. The results of this study are utilized to select the type of sensors, the frequency band for filtering and thereby to improve the signal-to-noise ratio for diagnosis or monitoring of valves in operation. As the final result of application study above, portable type leak diagnosis system by AE was developed. The outcome of the study can be definitely applied as a means of the diagnosis or monitoring system for energy saving and prevention of accident for power plant valve.

  • PDF

A Study on the Torque Characteristics of Butterfly Valve Disc in Fire Protection (소화용 버터플라이 밸브 디스크의 토크특성에 관한 연구)

  • 이동명;박승옥
    • Fire Science and Engineering
    • /
    • v.16 no.2
    • /
    • pp.33-37
    • /
    • 2002
  • This study has investigated hydrodynamic of torque characteristics for disc of butterfly valve that is used in control for fire-protection water, The free-streamline theory is applied to predict hydrodynamic of torque characteristics. The torque characteristics of disc are corrected for the angles of attack of valve disc and surrounding velocity of flow by theoretical torque equation, and correction equation is added. The torque characteristics of disc are investigated for the ratio of hub thickness to the valve diameter. The result of prediction are shown to be successful as that show typical torque characteristics of butterfly valve. Since the velocity distribution around the disc is confirmed in a visualization, it is confirmed that the free-streamline theory can be used to predict the torque characteristics of disc.