• 제목/요약/키워드: Rate-determining Step

검색결과 234건 처리시간 0.018초

Kinetic Study on Nucleophilic Displacement Reactions of 2-Chloro-4-Nitrophenyl X-Substituted-Benzoates with Primary Amines: Reaction Mechanism and Origin of the α-Effect

  • Um, Tae-Il;Kim, Min-Young;Kim, Tae-Eun;Um, Ik-Hwan
    • Bulletin of the Korean Chemical Society
    • /
    • 제35권2호
    • /
    • pp.436-440
    • /
    • 2014
  • The ${\alpha}$-Effect; Ground state; Transition state; Intramolecular H-bonding; Yukawa-Tsuno plot; Second-order rate constants for aminolysis of 2-chloro-4-nitrophenyl X-substituted-benzoates (1a-h) have been measured spectrophotometrically in 80 mol % $H_2O/20$ mol % DMSO at $25.0^{\circ}C$. The Br${\emptyset}$nsted-type plot for the reactions of 2-chloro-4-nitrophenyl benzoate (1d) with a series of primary amines curves downward, which has been taken as evidence for a stepwise mechanism with a change in rate-determining step (RDS). The Hammett plots for the reactions of 1a-h with hydrazine and glycylglycine are nonlinear while the Yukawa-Tsuno plots exhibit excellent linearity with ${\rho}_X=1.22-1.35$ and ${\gamma}= 0.57-0.59$, indicating that the nonlinear Hammett plots are not due to a change in RDS but are caused by stabilization of substrates possessing an electron-donating group (EDG) through resonance interactions between the EDG and C=O bond of the substrates. The ${\alpha}$-effect exhibited by hydrazine increases as the substituent X changes from a strong EDG to a strong electron-withdrawing group (EWG). It has been concluded that destabilization of hydrazine through the electronic repulsion between the adjacent nonbonding electrons is not solely responsible for the substituent dependent ${\alpha}$-effect but stabilization of the transition state is also a plausible origin of the ${\alpha}$-effect.

The α-Effect in Nucleophilic Substitution Reactions of Y-Substituted-Phenyl X-Substituted-Cinnamates with Butane-2,3-dione Monoximate

  • Kim, Min-Young;Son, Yu-Jin;Um, Ik-Hwan
    • Bulletin of the Korean Chemical Society
    • /
    • 제34권10호
    • /
    • pp.2877-2882
    • /
    • 2013
  • Second-order rate constants ($k_{Ox^-}$) have been measured spectrophotometrically for nucleophilic substitution reactions of 4-nitrophenyl X-substituted-cinnamates (7a-7e) and Y-substituted-phenyl cinnamates (8a-8e) with butane-2,3-dione monoximate ($Ox^-$) in 80 mol % $H_2O$/20 mol % DMSO at $25.0{\pm}0.1^{\circ}C$. The Hammett plot for the reactions of 7a-7e consists of two intersecting straight lines while the Yukawa-Tsuno plot exhibits an excellent linearity with ${\rho}_X$=0.85 and r=0.58, indicating that the nonlinear Hammett plot is not due to a change in the rate-determining step but is caused by resonance stabilization of the ground state (GS) of the substrate possessing an electron-donating group (EDG). The Br${\o}$nsted-type plot for the reactions of Y-substituted-phenyl cinnamates (8a-8e) is linear with ${\beta}_{lg}$ = -0.64, which is typical of reactions reported previously to proceed through a concerted mechanism. The ${\alpha}$-nucleophile ($Ox^-$) is more reactive than the reference normal-nucleophile ($4-ClPhO^-$). The magnitude of the ${\alpha}$-effect (i.e., the $k_{Ox^-}/k_{4-ClPhO^-}$ ratio) is independent of the electronic nature of the substituent X in the nonleaving group but increases linearly as the substituent Y in the leaving group becomes a weaker electron-withdrawing group (EWG). It has been concluded that the difference in solvation energy between $Ox^-$ and $4-ClPhO^-$ (i.e., GS effect) is not solely responsible for the ${\alpha}$-effect but stabilization of transition state (TS) through a cyclic TS structure contributes also to the Y-dependent ${\alpha}$-effect trend (i.e., TS effect).

Al(lll)-Porphyrin착물에 의한 올레핀 산화반응 메카니즘 연구 (Kinetic Investigation of Olefin Oxidation by Al(III)-Porphyrin Complexes)

  • 나훈길;한만소
    • 대한화학회지
    • /
    • 제50권1호
    • /
    • pp.46-52
    • /
    • 2006
  • 착물을 촉매제로 하여 용매인 CH2Cl2와 산화제 NaClO를 사용하여 올레핀 산화반응의 메카니즘 연구를 하였다. 이들 반응에서 포르피린의 치환기는 TPP(5,10,15,20-Tetraphenylporphyrin)와 (p-X)TPP(X=CH3O, CH3, F, Cl)를, 올레핀은 styrene과 (p-X)styrene (X=CH3O, CH3, Cl, Br)을 사용하였다. 일반 효소반응에서 잘 알려진 Michaelis-Menten식에 따라 Km과 Vmax 값을 구하였다. Michaelis-Menten 식의 속도 파라미터를 포르피린 치환기에 따라 측정하고, 이들 파라미터와 치환기상수 간의 상관성을 조사함으로써 올레핀 산화반응의 중간체 M-oxo-olefin의 형성 과정과 분해 과정이 촉매활성이나 속도 결정 단계의 변화에 미치는 영향을 분석 하고자 하였다.

Alkaline Hydrolysis of Y-Substituted Phenyl Phenyl Thionocarbonates: Effect of Changing Electrophilic Center from C=O to C=S on Reactivity and Mechanism

  • Kim, Song-I;Park, Hey-Ran;Um, Ik-Hwan
    • Bulletin of the Korean Chemical Society
    • /
    • 제32권1호
    • /
    • pp.179-182
    • /
    • 2011
  • Second-order rate constants ($k_{OH^-}$) have been measured spectrophotometrically for reactions of Y-substituted phenyl phenyl thionocarbonates (4a-i) with $OH^-$ in 80 mol % $H_2O$/20 mol % DMSO at $25.0{\pm}0.1^{\circ}C$. The $k_{OH^-}$ values for the reactions of 4a-i have been compared with those reported previously for the corresponding reactions of Y-substituted phenyl phenyl carbonates (3a-i) to investigate the effect of changing the electrophilic center from C=O to C=S on reactivity and mechanism. Thionocarbonates 4a-i are less reactive than the corresponding carbonates 3a-i although 4a-i are expected to be more reactive than 3a-i. The Bronsted-type plot for reactions of 4a-i is linear with $\beta_{lg}$ = -0.33, a typical $\beta_{lg}$ value for reactions reported to proceed through a stepwise mechanism with formation of an intermediate being the rate-determining step (RDS). Furthermore, the Hammett plot correlated with $\sigma^o$ constants results in much better linearity than that correlated with $\sigma^-$ constants, indicating that expulsion of the leaving group is not advanced in the RDS. Thus, alkaline hydrolysis of 4a-i has been concluded to proceed through a stepwise mechanism with formation of an intermediate being RDS, which is in contrast to the forced concerted mechanism reported for the corresponding reactions of 3a-i. Enhanced stability of the intermediate upon modification of the electrophilic center from C=O to C=S has been concluded to be responsible for the contrasting mechanisms.

운반체로 $NtnOenH_4$$NdienOenH_4$를 포함한 액체막을 통한 전이금속 양이온의 운반속도 (Transport Rate of Transition Metal Cations through a Bulk Liquid Membrane Containing $NtnOenH_4$ and $NdienOenH_4$ as Carriers)

  • 김해중;장정호;신영국
    • 대한화학회지
    • /
    • 제41권2호
    • /
    • pp.77-81
    • /
    • 1997
  • 거대고리 리간드인 1,12-diaza-3,4;9,10-dibenzo-5,8-dioxacyclopentadecane$(NtnOenH_4)$와 1,12,15-triaza-3,4;9,10-dibenzo-5,8-dioxacyclo-heptadecane$(NdienOenH_4)$를 운반체로 포함한 클로로포름 액체막을 통한 운반속도는 Ni(II)$({\Delta}Gp)$값을 구하여 본 결과, 운반속도의 순위는 전이금속 양이온들이 갖는 분배수화 자유에너지의 음의 값의 크기에 비례함을 알 수 있었다.

  • PDF

Origin of the α-Effect in Nucleophilic Substitution Reactions of Y-Substituted Phenyl Benzoates with Butane-2,3-dione Monoximate and Z-Substituted Phenoxides: Ground-State Destabilization vs. Transition-State Stabilization

  • Kim, Mi-Sun;Min, Se-Won;Seo, Jin-A;Um, Ik-Hwan
    • Bulletin of the Korean Chemical Society
    • /
    • 제30권12호
    • /
    • pp.2913-2917
    • /
    • 2009
  • Second-order rate constants (k$_{Nu–}$) have been measured for nucleophilic substitution reactions of Y-substituted phenyl benzoates (1a-i) with butane-2,3-dione monoximate ($Ox^-\;an\;\alpha$-nucleophile) and Z-substituted phenoxides in 80 mol% H$_2$O/20 mol% DMSO at 25.0${\pm}$0.1$^{\circ}C$. Hammett plots correlated with ${\sigma}^o$ and ${\sigma}^-$ constants for reactions of 1a-h with Ox$^–$ exhibit many scattered points. In contrast, the Yukawa-Tsuno plot results in a good linear correlation with ${\rho}_Y$ = 2.20 and r = 0.45, indicating that expulsion of the leaving group occurs in the rate-determining step (RDS). A stepwise mechanism with expulsion of the leaving-group being the RDS has been excluded, since Y-substituted phenoxides are less basic and better nucleofuges than Ox$^–$. Thus, the reactions have been concluded to proceed through a concerted mechanism. Ox$^–$ is over 10$^2$ times more reactive than its reference nucleophile, 4-chlorophenoxide (4-ClPhO$^–$). One might suggest that stabilization of the transition-state (TS) through intramolecular general acid/base catalysis is responsible for the ${\alpha}$-effect since such general acid/base catalysis is not possible for the corresponding reactions with 4-ClPhO$^–$. However, destabilization of the ground-state (GS) of Ox$^–$ has been concluded to be mainly responsible for the ${\alpha}$-effect found in this study on the basis of the fact that the magnitude of the ${\alpha}$-effect is independent of the nature of the substituent Y.

Nucleophilic Substitution Reactions of Phenyl Y-Substituted-Phenyl Carbonates with Butane-2,3-dione Monoximate and 4-Chlorophenoxide: Origin of the α-Effect

  • Kim, Min-Young;Min, Se-Won;Um, Ik-Hwan
    • Bulletin of the Korean Chemical Society
    • /
    • 제34권1호
    • /
    • pp.49-53
    • /
    • 2013
  • Second-order rate constants have been measured spectrophotometrically for the reactions of phenyl Y-substituted-phenyl carbonates 7a-g with butane-2,3-dione monoximate ($Ox^-$) in 80 mol % $H_2O$/20 mol % DMSO at $25.0{\pm}0.1^{\circ}C$. The ${\alpha}$-nucleophile $Ox^-$ is 53-95 times more reactive than the corresponding normal-nucleophile 4-$ClPhO^-$ toward 7a-g, indicating that the ${\alpha}$-effect is operative. The magnitude of the ${\alpha}$-effect (e.g., the $k_{Ox^-}/k_{4-ClPhO^-}$ ratio) is independent of the electronic nature of the substituent Y. The cause of the ${\alpha}$-effect for the reactions of 7a-g has been suggested to be ground-state (GS) effect rather than transition-state (TS) stabilization through a six-membered cyclic TS, in which $Ox^-$ behaves a general acid/base catalyst. This idea is further supported by the result that $OH^-$ exhibits negative deviation from the linear Br${\o}$nsted-type plot composed of a series of aryloxides, while $Ox^-$ deviates positively from the linearity. Differential solvation of the GS of $Ox^-$ and 4-$ClPhO^-$ has been suggested to be responsible for the ${\alpha}$-effect exerted by $Ox^-$.

Structure-Reactivity Correlations in Nucleophilic Displacement Reactions of Y-Substituted-Phenyl X-Substituted-Cinnamates with Z-Substituted-Phenoxides

  • Son, Yu-Jin;Kim, Eun-Hee;Kang, Ji-Sun;Um, Ik-Hwan
    • Bulletin of the Korean Chemical Society
    • /
    • 제34권8호
    • /
    • pp.2455-2460
    • /
    • 2013
  • Second-order rate constants ($k_N$) have been measured spectrophotometrically for the nucleophilic displacement reactions of 4-nitrophenyl X-substituted-cinnamates (4a-4e) and Y-substituted-phenyl cinnamates (5a-5e) with Z-substituted-phenoxide anions in 80 mol % $H_2O$/20 mol % DMSO at $25.0{\pm}0.1^{\circ}C$. The Hammett plot for the reactions of 4a-4e with 4-chlorophenoxide (4-$ClPhO^-$) consists of two intersecting straight lines, which might be taken as a change in the rate-determining step (RDS). However, it has been concluded that the nonlinear Hammett plot is not due to a change in the RDS but is caused by stabilization of the ground state of substrates possessing an electron-withdrawing group in the cinnamoyl moiety through resonance interactions, since the Yukawa-Tsuno plot exhibits an excellent linear correlation with ${\rho}X=0.89$ and r = 0.58. The Br${\o}$nsted-type plot for the reactions of 4-nitrophenyl cinnamate (4c) with Z-substituted-phenoxides is linear with ${\beta}_{nuc}=0.76$. The Br${\o}$nsted-type plot for the reactions of Y-substituted-phenyl cinnamates (5a-5d) with 4-chlorophenoxides (4-$ClPhO^-$) is also linear with ${\beta}_{lg}=-0.72$. The Hammett plot correlated with ${\sigma}^-$ constants for the reactions of 5a-5d results in a much better linear correlation than that correlated with ${\sigma}^o$ constants, indicating that a partial negative charge develops on the O atom of the leaving aryloxide. Thus, the reactions have been concluded to proceed through a concerted mechanism.

A Kinetic Study on Aminolysis of Benzyl 2-Pyridyl Thionocarbonate and t-Butyl 2-Pyridyl Thionocarbonate: Effects of Polarizability and Steric Hindrance on Reactivity and Reaction Mechanism

  • Kim, Min-Young;Bae, Ae Ri;Um, Ik-Hwan
    • Bulletin of the Korean Chemical Society
    • /
    • 제34권8호
    • /
    • pp.2325-2329
    • /
    • 2013
  • Second-order rate constants $k_N$ have been measured for reactions of benzyl 2-pyridyl thionocarbonate (4b) and t-butyl 2-pyridyl thionocarbonate (5b) with a series of cyclic secondary amines in MeCN at $25.0{\pm}0.1^{\circ}C$. The $k_N$ values for the reactions of 4b and 5b have been compared with those reported previously for the corresponding reactions of benzyl 2-pyridyl carbonate (4a) and t-butyl 2-pyridyl carbonate (5a) to investigate the effect of changing the electrophilic center from C=O to C=S on reactivity and reaction mechanism. The thiono compound 4b is more reactive than its oxygen analogue 4a. The Br${\o}$nsted-type plots for the reactions of 4a and 4b are linear with ${\beta}_{nuc}=0.57$ and 0.37, respectively. The reactions of 4a were previously reported to proceed through a concerted mechanism, while those of 4b in this study have been concluded to proceed through a stepwise mechanism with formation of an intermediate being the rate-determining step on the basis of the ${\beta}_{nuc}$ value of 0.37. Enhanced polarizability upon changing the C=O in 4a by C=S has been suggested to be responsible for the reactivity order and the contrasting reaction mechanisms. In contrast, the reactivity of 5a and 5b is similar, but they are much less reactive than 4a and 4b. Furthermore, the reactions of 5a and 5b have been concluded to proceed through the same mechanism (i.e., a concerted mechanism) on the basis of linear Bronsted-type plots with ${\beta}_{nuc}=0.45$ or 0.47. It has been concluded that the strong steric hindrance exerted by the t-Bu in 5a and 5b causes a decrease in their reactivity and forces the reactions to proceed through a concerted mechanism.

强酸性 溶液中에서 Cinnamonitrile의 加水分解 反應메카니즘 (Mechanism on the Hydrolysis of Cinnamonitrile in Strong Acid)

  • 권기성;성낙도;김태린;전용구
    • 대한화학회지
    • /
    • 제28권6호
    • /
    • pp.418-424
    • /
    • 1984
  • Cinnamonitrile의 산-가수분해 반응속도상수를 25$^{\circ}$C, HClO$_4$ 1 ~ 5M의 센산성 용액속에서 UV분광법으로 측정하고 Bunnett관계식에 적용하여 ${\omega}$ = 9.8, ${\omega}^*$ = 0.42 및 ${\phi}$=1.6등의 hydration parameter를 구하였다. 이는 질소원자에 양성자화가 이루어진 짝산에 대하여 속도결정단계에서 친핵체로 물분자가 첨가된 다음에 양성자 전달체로 작용한다는 것을 시사한다. Cinnamonitrile 분자의 궤도함수를 CNDO/2방법으로 계산한 바, 형태이성체의 안정도는 (E)-planar>(Z)-planar이였으며 음하전의 크기는 $C_8({\beta}){\ll}N$이였고 전이상태에서 물분자는 짝산의 양하전이 큰 $C_7({\alpha}$)원자에 대하여 ${\sigma}$접근함을 알았다. 이상의 결과로 부터, 센산성속에서 cinnamonitrile의 가수분해반응은 특정 산-촉매작용을 수반하는 A-2형의 산-가수분해 반응메카니즘에 의하여 진행됨을 알았다.

  • PDF