DOI QR코드

DOI QR Code

Alkaline Hydrolysis of Y-Substituted Phenyl Phenyl Thionocarbonates: Effect of Changing Electrophilic Center from C=O to C=S on Reactivity and Mechanism

  • Kim, Song-I (Department of Chemistry and Nano Science, Ewha Womans University) ;
  • Park, Hey-Ran (Department of Chemistry and Nano Science, Ewha Womans University) ;
  • Um, Ik-Hwan (Department of Chemistry and Nano Science, Ewha Womans University)
  • Received : 2010.10.18
  • Accepted : 2010.11.09
  • Published : 2011.01.20

Abstract

Second-order rate constants ($k_{OH^-}$) have been measured spectrophotometrically for reactions of Y-substituted phenyl phenyl thionocarbonates (4a-i) with $OH^-$ in 80 mol % $H_2O$/20 mol % DMSO at $25.0{\pm}0.1^{\circ}C$. The $k_{OH^-}$ values for the reactions of 4a-i have been compared with those reported previously for the corresponding reactions of Y-substituted phenyl phenyl carbonates (3a-i) to investigate the effect of changing the electrophilic center from C=O to C=S on reactivity and mechanism. Thionocarbonates 4a-i are less reactive than the corresponding carbonates 3a-i although 4a-i are expected to be more reactive than 3a-i. The Bronsted-type plot for reactions of 4a-i is linear with $\beta_{lg}$ = -0.33, a typical $\beta_{lg}$ value for reactions reported to proceed through a stepwise mechanism with formation of an intermediate being the rate-determining step (RDS). Furthermore, the Hammett plot correlated with $\sigma^o$ constants results in much better linearity than that correlated with $\sigma^-$ constants, indicating that expulsion of the leaving group is not advanced in the RDS. Thus, alkaline hydrolysis of 4a-i has been concluded to proceed through a stepwise mechanism with formation of an intermediate being RDS, which is in contrast to the forced concerted mechanism reported for the corresponding reactions of 3a-i. Enhanced stability of the intermediate upon modification of the electrophilic center from C=O to C=S has been concluded to be responsible for the contrasting mechanisms.

Keywords

References

  1. Scheithauer, S.; Mayer, R. Chem. Ber. 1965, 98, 838-843. https://doi.org/10.1002/cber.19650980322
  2. Bruice, P.; Mautner, S. J. Am. Chem. Soc. 1973, 95, 1582-1586. https://doi.org/10.1021/ja00786a037
  3. Pedersen, B. S.; Scheibye, S. Nilsson, N. H.; Lawesson, S. O. Bull. Soc. Chim. Belg. 1978, 87, 223-228. https://doi.org/10.1002/bscb.19780870310
  4. Um, I. H.; Lee, J. Y.; Bae, S. Y.; Buncel, E. Can. J. Chem. 2005, 83, 1365-1371. https://doi.org/10.1139/v05-157
  5. Um, I. H.; Han, J. Y.; Buncel, E. Chem. Eur. J. 2009, 15, 1011-1017. https://doi.org/10.1002/chem.200801534
  6. Um, I. H.; Kim, E. H.; Lee, J. Y. J. Org. Chem. 2009, 74, 1212-1217. https://doi.org/10.1021/jo802446y
  7. Um, I. H.; Hwang, S. J.; Yoon, S.; Jeon, S. E.; Bae, S. K. J. Org. Chem. 2008, 73, 7671-7677. https://doi.org/10.1021/jo801539w
  8. Um, I. H.; Hwang, S. J.; Baek, M. H.; Park, E. J. J. Org. Chem. 2006, 71, 9191-9197. https://doi.org/10.1021/jo061682x
  9. Um, I. H.; Han, H. J.; Back, M. H.; Bae, S. Y. J. Org. Chem. 2004, 69, 6365-6370. https://doi.org/10.1021/jo0492160
  10. Um, I. H.; Lee, S. E.; Kwon, H. J. J. Org. Chem. 2002, 67, 8999-9005. https://doi.org/10.1021/jo0259360
  11. Um, I. H.; Yoon, S.; Park, H. R.; Han, H. J. Org. Biomol. Chem. 2008, 6, 1618-1624. https://doi.org/10.1039/b801422a
  12. Um, I. H.; Kim, E. Y.; Park, H. R.; Jeon, S. E. J. Org. Chem. 2006, 71, 2302-2306. https://doi.org/10.1021/jo052417z
  13. Castro, E. A.; Cubillos, M.; Santos, J. G. J. Org. Chem. 1997, 61, 3501-3505. https://doi.org/10.1021/jo951726u
  14. Castro, E. A.; Cubillos, M.; Santos, J. G.; Tellez, Jimena. J. Org. Chem. 1997, 62, 2512-2517. https://doi.org/10.1021/jo961921o
  15. Castro, E. A.; Santos, J. G.; Tellez, Jimena.; Umana, M. I. J. Org. Chem. 1997, 62, 6568-6574. https://doi.org/10.1021/jo970624w
  16. Castro, E. A.; Saavedra, C.; Santos, J. G.; Umana, M. I. J. Org. Chem. 1999, 64, 5401-5407. https://doi.org/10.1021/jo990084y
  17. Oh, H. K.; Woo, S. Y.; Shin, C. H.; Park, Y. S.; Lee, I. J. Org. Chem. 1997, 62, 5780-5784. https://doi.org/10.1021/jo970413r
  18. Oh, H. K.; Yang, J. H.; Sung, D. D. J. Chem. Soc., Perkin Trans. 2 2000, 101-105.
  19. Oh, H. K.; Kim, S. K.; Cho, I. H.; Lee, H. W.; Lee, I. J. Chem. Soc., Perkin Trans. 2 2000, 2306-2310.
  20. Campbell, P.; Lapinskas, B. A. J. Am. Chem. Soc. 1977, 99, 5378-5382. https://doi.org/10.1021/ja00458a024
  21. Campbell, P.; Nashed, N. T. J. Am. Chem. Soc. 1982, 104, 5221-5226. https://doi.org/10.1021/ja00383a038
  22. Hill, S. V.; Thea, S.; Williams, A. J. Chem. Soc., Perkin Trans. 1983, 2, 437-446.
  23. Oh, H. K.; Kim, S. K.; Lee, H. W.; Lee, I. New J. Chem. 2001, 25, 313-317. https://doi.org/10.1039/b006974o
  24. Oh, H. K.; Kim, S. K.; Lee, H. W.; Lee, I. J. Chem. Soc., Perkin Trans. 2 2001, 1753-1757.
  25. Kim, S. I.; Hwang, S. j.; Jung, E. M.; Um, I. H. Bull. Korean Chem. Soc. 2010, 31, 2015-2018. https://doi.org/10.5012/bkcs.2010.31.7.2015
  26. Pearson, R. G. J. Am. Chem. Soc. 1963, 85, 3533-3539. https://doi.org/10.1021/ja00905a001
  27. Ho, T. L. In Hard andSoft Acids and Bases; Pearson, R. G. Ed.; Academic Press: New York, 1977.
  28. Um, I. H.; Im, L. R.; Kim, E. H.; Shin, J. H. Org. Biomol. Chem. 2010, 8, 3801-3806. https://doi.org/10.1039/c0ob00031k
  29. Um, I. H.; Lee, J. Y.; Ko, S. H.; Bae, S. K. J. Org. Chem. 2006, 71, 5800-5803. https://doi.org/10.1021/jo0606958
  30. Um, I. H.; Kim, K. H.; Park, H. R.; Fujio, M. Tsuno, Y. J. Org. Chem. 2004, 69, 3937-3942. https://doi.org/10.1021/jo049694a
  31. Um, I. H.; Min, J. S.; Ahn, J. A.; Hahn, H. J. J. Org. Chem. 2000, 65, 5659-5663. https://doi.org/10.1021/jo000482x
  32. Um, I. H.; Min, J. S.; Lee, H. W. Can. J. Chem. 1999, 77, 659-666. https://doi.org/10.1139/cjc-77-5-6-659
  33. Um, I. H.; Han, J. Y.; Shin, Y. H. J. Org. Chem. 2009, 74, 3073-3078. https://doi.org/10.1021/jo900219t
  34. Um, I. H.; Akhtar, K.; Shin, Y. H.; Han, J. Y. J. Org. Chem. 2007, 72, 3823-3829. https://doi.org/10.1021/jo070171n
  35. Um, I. H.; Shin, Y. H.; Han, J. Y.; Mishima, M. J. Org. Chem. 2006, 71, 7715-7720. https://doi.org/10.1021/jo061308x
  36. Jencks, W. P.; Gilchrist, M. J. Am. Chem. Soc. 1968, 90, 2622-2637. https://doi.org/10.1021/ja01012a030
  37. Jencks, W. P. Chem. Rev. 1985, 85, 511-527. https://doi.org/10.1021/cr00070a001
  38. Jencks, W. P.; Chem. Soc. Rev. 1981, 10, 345-375. https://doi.org/10.1039/cs9811000345
  39. Satterthwait, A. C.; Jencks, W. P. J. Am. Chem. Soc. 1974, 96, 7018-7031. https://doi.org/10.1021/ja00829a034
  40. Menger, F. M.; Smith, J. H. J. Am. Chem. Soc. 1972, 94, 3824-3829. https://doi.org/10.1021/ja00766a027
  41. Bruice, T. C.; Hegarty, A. F.; Felton, S. M.; Donzel, A.; Kundu, N. G. J. Am. Chem. Soc. 1970, 92, 1370-1374. https://doi.org/10.1021/ja00708a044

Cited by

  1. Alkaline Hydrolysis of 4-Nitrophenyl X-Substituted-Benzoates Revisited: New Insights from Yukawa-Tsuno Equation vol.37, pp.12, 2016, https://doi.org/10.1002/bkcs.11000
  2. -Y-substituted-Phenyl Thionocarbonates with 1,8-Diazabicyclo[5.4.0]undec-7-ene in Acetonitrile vol.38, pp.10, 2017, https://doi.org/10.1002/bkcs.11242
  3. Experimental and theoretical studies on the nucleofugality ratio in the aminolysis reactions of O-(4-cyanophenyl) O-(3-nitrophenyl) thionocarbonate with amines in aqueous ethanol vol.41, pp.18, 2017, https://doi.org/10.1039/C7NJ00045F
  4. Synthesis of New Artemisinin Analogues from Artemisinic Acid Modified at C-3 and C-13 and Their Antimalarial Activity vol.64, pp.9, 2011, https://doi.org/10.1021/np0101752
  5. Revealing the Hydrolysis Mechanism of a Hg2+-Reactive Fluorescein Probe: Novel Insights on Thionocarbonated Dyes vol.5, pp.1, 2011, https://doi.org/10.1021/acsomega.9b03333