• Title/Summary/Keyword: Rate of spread

Search Result 998, Processing Time 0.032 seconds

Comparative Study of Flame Spread Behaviors in One Dimensional Droplet Array Under Supercritical Pressures of Normal Gravity and Microgravity (통상 및 미소 중력의 초임계 압력하에서 일차원 액적 배열의 화염 퍼짐 거동의 비교 연구)

  • Park, Jeong;Shin, Hyun Dong;Kobayashi, Hideaki;Niioka, Takashi
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.1
    • /
    • pp.140-148
    • /
    • 1999
  • Experiments on flame spread in an one-dimensional droplet array up to supercritical pressures of fuel droplet have been conducted In normal gravity and microgravity. Evaporating process around unburnt droplet is observed through high-speed Schlieren and direct visualizations in detail, and flame spread rate is measured using high speed chemiluminescence images of OH radical. Flame spread behaviors are categorized into three: flame spread is continuous at low pressures and is regularly intermittent up to the critical pressure of fuel. flame spread is irregularly intermittent and zig-zag at supercritical pressures of fuel. At atmospheric pressure, the limit droplet spacing and the droplet spacing of maximum flame spread rate in microgravity are larger than those in normal gravity. In microgravity, the flame spread rate with the increase of ambient pressure decreases initially, takes a minimum, and then decreases after taking maximum. This is so because the flame spread time is determined by competing effects between the increased transfer time of thermal boundary layer due to reduced flame diameter and the reduced ignition delay time in terms of the increase of ambient pressure. Consequently, it is found that flame spread behaviors in microgravity are considerably different from those in normal gravity due to the absence of natural convection.

Spread Speed of Forest Fire based on Slope (경사에 따른 산불의 확산속도)

  • An, Sang-Hyun;Shin, Young-Chun
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.8 no.4
    • /
    • pp.75-79
    • /
    • 2008
  • As Information Technology developed, Information requirement has been went higher. In the field of GIS(Geographic Information System) more information is processed more quickly and accurately. Especially, quick analysis of forest fire information (topography, ignition point, weather condition, etc.) over a wide area is essential in order to minimize victim, environmental damage, and economical damage, decide course of evacuating, estimate a fire spread course, and attack resource arrangement. We determined a fire spread distance at each unit time through an experiment with various slope degrees and distinction of flat, upslope and downslope. For the tests on the upslope, as the slope increased, the rate of spread increased. On the downslope in contrast with the upslope, as the slope increased, the rate of spread decreased. We analyzed a spread rate of forest fire on each slope as the method classified upslope(+) and downslope(-) using the results obtained from the experiment. Consequently, the proposed method is able to be used to effectively support the attack of forest fire by providing accurate predictions of fire spread.

A Numerical Study of Flame Spread of A Surface Forest Fire (지표화 산불의 화염전파 수치해석)

  • Kim, Dong-Hyun;Lee, Myung-Bo;Kim, Kwang-Il
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.80-83
    • /
    • 2008
  • The characteristics of the spread of a forest fire are generally related to the attributes of combustibles, geographical features, and meteorological conditions, such as wind conditions. The most common methodology used to create a prediction model for the spread of forest fires, based on the numerical analysis of the development stages of a forest fire, is an analysis of heat energy transmission by the stage of heat transmission. When a forest fire breaks out, the analysis of the transmission velocity of heat energy is quantifiable by the spread velocity of flame movement through a physical and chemical analysis at every stage of the fire development from flame production and heat transmission to its termination. In this study, the formula used for the 1-dimensional surface forest fire behavior prediction model, derived from a numerical analysis of the surface flame spread rate of solid combustibles, is introduced. The formula for the 1-dimensional surface forest fire behavior prediction model is the estimated equation of the flame spread velocity, depending on the condition of wind velocity on the ground. Experimental and theoretical equations on flame duration, flame height, flame temperature, ignition temperature of surface fuels, etc., has been applied to the device of this formula. As a result of a comparison between the ROS(rate of spread) from this formula and ROSs from various equations of other models or experimental values, a trend suggesting an increasing curved line of the exponent function under 3m/s or less wind velocity condition was identified. As a result of a comparison between experimental values and numerically analyzed values for fallen pine tree leaves, the flame spread velocity reveals has a error of less than 20%.

  • PDF

Evaluating Predictive Ability of Classification Models with Ordered Multiple Categories

  • Oong-Hyun Sung
    • Communications for Statistical Applications and Methods
    • /
    • v.6 no.2
    • /
    • pp.383-395
    • /
    • 1999
  • This study is concerned with the evaluation of predictive ability of classification models with ordered multiple categories. If categories can be ordered or ranked the spread of misclassification should be considered to evaluate the performance of the classification models using loss rate since the apparent error rate can not measure the spread of misclassification. Since loss rate is known to underestimate the true loss rate the bootstrap method were used to estimate the true loss rate. thus this study suggests the method to evaluate the predictive power of the classification models using loss rate and the bootstrap estimate of the true loss rate.

  • PDF

Analysis of the relationship between interest rate spreads and stock returns by industry (금리 스프레드와 산업별 주식 수익률 관계 분석)

  • Kim, Kyuhyeong;Park, Jinsoo;Suh, Jihae
    • Journal of Intelligence and Information Systems
    • /
    • v.28 no.3
    • /
    • pp.105-117
    • /
    • 2022
  • This study analyzes the effects between stock returns and interest rate spread, difference between long-term and short-term interest rate through the polynomial linear regression analysis. The existing research concentrated on the business forecast through the interest rate spread focusing on the US market. The previous studies verified the interest rate spread based on the leading indicators of business forecast by moderating the period of long-term/short-term interest rates and analyzing the degree of leading. After the 7th reform of composite indices of business indicators in Korea of 2006, the interest rate spread was included in the items of composing the business leading indicators, which is utilized till today. Nevertheless, there are a few research on stock returns of each industry and interest rate spread in domestic stock market. Therefore, this study analyzed the stock returns of each industry and interest rate spread targeting Korean stock market. This study selected the long-term/short-term interest rates with high causality through the regression analysis, and then understood the correlations with each leading period and industry. To overcome the limitation of the simple linear regression analysis, polynomial linear regression analysis is used, which raised explanatory power. As a result, the high causality was verified when using differences between returns of corporate bond(AA-) without guarantee for three years by leading six months and call rate returns as interest rate spread. In addition, analyzing the stock returns of each industry, the relation between the relevant interest rate spread and returns of the automobile industry was the closest. This study is significant in the aspect of verifying the causality of interest rate spread, business forecast, and stock returns in Korea. Even though it could be limited to forecast the stock price by using only the interest rate spread, it would be working as a strong factor when it is properly utilized with other various factors.

Direct Sequence Spread Spectrum Transmitter using FPGAs

  • Abhijit S. Pandya;Souza, Ralph-D′;Chae, Gyoo-Yong
    • Journal of information and communication convergence engineering
    • /
    • v.2 no.2
    • /
    • pp.76-79
    • /
    • 2004
  • The DS-SS (Direct Sequence Spread Spec1nun) transmitter is part of a low data rate (∼150 kbps - burst rate and 64 bps - average data rate) wireless communication system. It is traditionally implemented using Digital Signal processing chip (DSP). However, with rapid increase in variety of services through cell phones, such as, web access, video transfer, online games etc. demand for higher rate is increasing steadily. Since the chip rate and thereby the sampling rate requirements of the system are fairly high, the transmitter should implemented using Field programmable Gate Arrays FPGAs instead of a DSP. This paper shows the steps taken to get a working prototype of the transmitter unit on a FPGA based platform.

Experimental Study on the Flame Spread Characteristics under Reduced Atmospheric Pressures and Elevated Oxygen Concentrations (저기압 고산소 환경에서 화염 전파특성에 관한 실험적 연구)

  • Yang, Ho-Dong;Kwon, Hang-June;Park, Seul-Hyun
    • Fire Science and Engineering
    • /
    • v.30 no.6
    • /
    • pp.78-83
    • /
    • 2016
  • The characteristics of flame spread under similar atmospheric conditions to those inside the first stage of launch vehicles were investigated to provide fundamental knowledge to prevent fires and explosions of vehicles during launching operations. To this end, the rate of flame spread on the solid fuel was measured at elevated oxygen concentrations and reduced atmospheric pressures. A 0.18 mm diameter optical fiber was used as a solid fuel. The experimental results indicated that elevated oxygen concentrations can increase the rate of flame spread while increasing the atmospheric pressures to 1 atm can lead to decreases in the rate of flame spread. The increases in the rate of flame spread with pressure is due mainly to reductions in the convective heat loss that are clarified through an analysis of the pressure dependence on the convective heat transfer coefficient.

Igniter and Thickness Effects on Upward Flame Spread

  • J.Q. Quintiere;Lee, C.H.
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 1997.11a
    • /
    • pp.154-161
    • /
    • 1997
  • Several studies have developed upward flame spread models which use somewhat different features. However, the models have not considered the transient effects of the igniter and the burning rate. Thus, the objective of this study is to examine a generalized upward flame spread model which includes these effects. We shall compare the results with results from simpler models used in the past in order to examine the importance of the simplifying assumptions. We compare these results using PMMA, and we also include experimental results for comparison. The results of the comparison indicate that flame velocity depends on the thermal properties of a material, the specific model for flame length and transient burning rate, as well as other variables including the heat flux by igniter and flame itself. The results from the generalized upward flame spread model can provide a prediction of flame velocity, flame and pyrolysis height, burnout time and position, and rate of energy output as a function of time.

  • PDF

Analysis of Forest Fire Spread Rate and Fire Intensity by a Wind Model (모형실험에 의한 풍속변화에 따른 산불의 확산속도와 강도 분석)

  • 채희문;이찬용
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.5 no.4
    • /
    • pp.213-217
    • /
    • 2003
  • Forest fire spread and intensity were modeled as a function of wind and fuel. Spread rate and intensity of forest fire were related to weight and thickness of forest fuel beds and to wind speed. Forest fire spread rate and fire intensity were differentiated according to wind speed. Rapid wind speed causes a faster forest fire spread rate and greater fire intensity than does slow wind speed. Relative burning time of the fire from beginning to end in the model was 161 sec at a wind speed of 0.5 m/sec and 146 sec at 1m/sec on the model. Average forest lire spread rate was 0.014 m/sec at a wind speed of 0.5 m/sec and 0.020 m/sec at 1m/sec. Average fire intensity was 0.183 ㎾/m at a wind speed of 0.5 m/sec, 0.259 ㎾/m at 1m/sec. Fire intensity was greater when forest fire spread rate was rapid.

An Experimental Study on Flame Spread in an One-Dimensional Droplet Array (일차원 액적 배열하에서 화염 퍼짐에 관한 실험적 연구)

  • Park, Jeong;Shin, Hyun Dong;Kobayashi, Hideaki;Niioka, Takashi
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.1
    • /
    • pp.131-139
    • /
    • 1999
  • Experimental investigations on flame spread in droplet arrays have been conducted under supercritical ambient pressures of fuel droplet. Flame spread rates are measured for n-Decane droplet of diameters of 0.75 and 1.0mm, using high speed images of OH chemiluminescence up to 3.0MPa. The pattern of flame spread is categorized into two: a continuous mode and an intermittent one. There exists a limit droplet spacing, above which flame spread does not occur. Flame spread rate with the decrease of droplet spacing increases and then decreases after takin& a maximum. It is also seen that there exists a limit ambient pressure, above which flame spread does not occur. Flame spread rate decreases monotonically with the increase of ambient pressure. Exceptionally, In the case of a small droplet spacing, flame spread with the increase of ambient pressure is extended to supercritical pressures of fuel droplet. This is caused by enhanced vaporization with the increase of ambient pressure. Consequently, in flame spread with droplet droplet spacing, the relative position of flame to droplet spacing plays an important role. The monotonic decrease with ambient pressure is mainly related to the reduction of flame radius in subcritical pressures and the extension to supercritical pressures of flame spread is caused by the reduction of ignition time of unburnt droplet due to the enhanced vaporization at supercritical pressures.