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Abstract

This study is concerned with the evaluation of predictive ability of classification
models with ordered multiple categories. If categories can be ordered or ranked, the
spread of misclassification should be considered to evaluate the performance of the
classification models using loss rate since the apparent error rate can not measure the
spread of misclassification. Since loss rate is known to underestimate the true loss
rate, the bootstrap method were used to estimate the true loss rate. Thus, this study
suggests the method to evaluate the predictive power of the classification models
using loss rate and the bootstrap estimate of the true loss rate.

1. Introduction

In developing predictive classification models, it is useful to employ three stages of the
analysis. The first stage, concerned solely with the original samples, i1s used to estimate a
classification function for a purpose of classification. There are two important points to be
checked before the estimation of the classification function. First, the distribution assumptions
concerning the data needed to be checked. The normal classification model assumes
multivariate normality of the independent variables, while rank transformation classification
models and the logit model require no assumptions on the form of the distribution of the
independent variables.

The second stage is concerned with the performance of a classification model. One way of
evaluating its performance is to calculating the apparent error rate, which is the proportion of
observed misclassification made by the classification function on its own sample. If each
category is to be treated equally, the use of the apparent error rate is useful to measure the
performance of the classification model. However, if categories can be ordered or ranked, the
spread of misclassification should be considered to measure the performance. Therefore, an
alternative misclassification rate such as a loss rate, which can measure the spread of
misclassification, should be employed when dealing with the classification case with ordered
multiple categories.

The third stage is concerned with predictive power of the classification model. As with
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any inferential technique based on samples, it is well known that the misclassification rates
obtained in the second stage tend to underestimate the true misclassification rate. This is
because the prediction is based on the same data used to derived the classification functions.

Recently, resampling method such as bootstrap method has been used to estimate the
predictive power of the classification model. Efron (1979,1983), and Efron and Gong (1983)
compared the bootstrap method with the cross-validation method under normal distribution in
the linear classification model. He concluded that the cross-validation method gives a nearly
unbiased estimate of the true error rate, but often unacceptably high variability, particularly if
the sample size is small. However, the bootstrap method produced an almost unbiased
estimate with a small variance.

For the empirical study with ordered multiple categories, the classification of the bond
ratings are considered. Pogue and Soldofsky (1969), and Kaplan and Urwitz (1979) used
regression model and Pinches and Mingo (1975) used a linear and quadratic classification
model. They employed holdout method to evaluate the predictive power of the models with
small holdout samples. One drawback of this method is that there are problems connected
with the size of the test sample-if it is large, a good assessment of the performance will be
obtained, but if it is small, its performance is highly vanable. The problems found in the
previous works are: (1) the violation of a multivariate normality in the normal classification
models, (2) the report of overall misclassification rate, and (3) inaccurate measure of predictive
ability.

Therefore, this study deals with the common problems appearing in the classification
analysis. First, this study compares the efficiency between the normal classification
models(linear, quadratic), rank transformation classification models(linear, quadratic) and the
logit model. Second, this study introduces a loss function in order to measure the spread of
misclassification and evaluates the performance with the loss rate as well as the apparent
error rate. The loss rate can be defined as the average of the loss made due to
misclassification. Third, this study is concerned with the estimation of the true loss rate
using the bootstrap method to measure the predictive power of the classification models.

2. Misclassification Rate

Consider classification models with g ordered multiple categories. The data consist of

random sample of size n; from each category ¢ and size N for entire sample. The model
defines disjoint classification regions R,;(x), Ry(x),..., R, (x) such that a future observation X,
is classified to category ¢ if X,e R;(x). The apparent error rate (APER) is defined as the

proportion of observed classification error made by the estimated classification function in the
sample. It is useful to define a misclassification variable M;(X,|X) which indicates the

misclassification of an single observation X, from category ¢ into category 7, given the entire
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sample. Thus

0 if X,eR(x)
Mi(X,|X) =
1 if X,eR(x)

Let APER; be an estimate of conditional probability of misclassifying an observation from
category ¢ into category ;. The apparent error rate of category i, APER, , is an estimate of

the marginal probability of misclassifying an observation from category 7. It can be expressed
as the proportion of observed errors made by the classification functions on its own sample

for category 1.
APER; = ,21 APER; = ni, ; Z_Mﬁ(x,y). 1=1,2,..., 4. 2.1

The overall apparent error rate, APER, is an estimate of the overall probability of
misclassification and is obtained by multiplying each APER; by its sample proportion

s;= n;/N and summing it over ¢ :

APER = gl S,‘APER,’ = 7‘1\,“ 2 2} gMﬁ(xif)- (22)

=1

The apparent error rate is intuitively appealing and easy to calculate. It is used as an
estimate of the true error rate. Unfortunately this will typically lead to an
optimistic(under)estimate of the true error rate for future observation. Efron (1983) defined
the true error rate ( 7ER) which is the probability of incorrectly classifying a randomly
selected future observation X, in the binary classification case. Extending his theory the true

error rate for category ¢ using (2.1) can be defined as:

; TER;

g E{M;(X,[X): F;} (2.3)

]f:*] P{XOERj(X): Fi}y 1: 1,2, o, 8.

TER;

Il

In the expression the data X and the classification regions R;(x) are regarded as fixed.
The symbol E{M;(X,X) : F;} indicates expectation over a single new observation X, from
unknown distribution F; P{X,eR;(x):F;} indicates probability of misclassifying a single

new observation from F; into category 7. The overall true error rate is
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TER = 2‘ p; TRE;, (2.4)
where p, is a prior probability for category .

3. Loss Rate and Excess Loss

For the case of ordered multiple categories the application of the apparent error rate, which
assigns equal loss of misclassification, seems to be inappropriate since the apparent error rate
can not measure the spread of the misclassification. An alternative method should be used to
measure the spread of misclassification. In ordered categories it is assumed that the loss of
misclassification increases as the difference between the observed order and the estimated
order becomes wider. Therefore, a general loss function should be introduced when a new

observation X, from category ¢ is misclassified as category ; as follows.

li—jl*  if X,eRi(x)
Li(X,1X) = (3.1
0 if X,eR,(x)

where « >is a given positive number. Since ¢ is usually unknown, the assignment of «
must be highly subjective matter. When «=2, L%(X,|X) is called the squared loss function,
When =1, LL(X,1X) is called the absolute loss function, and when =0, L3(X,1X) is
called the constant loss function which is the same as the misclassification variable
M (X, 1X).

The loss rate of category i can be defined as the average of the loss made in the sample
of category 1 due to misclassification.

-

n £
LR =L 3 3 Litx), =28 (32)

n; JE

For example, the larger the difference of the constant loss rate and the absolute loss rate
becomes, the wider the spread of the misclassification gets. Therefore, the loss rate should
be considered to measure the predictive ability of the classification models. And overall loss
rate can be defined as

LR = g 5. LRS. (3.3)
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However, like the apparent error rate the sample based loss rate usually tends to be smaller
than the true loss rate because the sample data have been used both to construct and to
evaluate the classification functions. The true loss rate can be defined as the expected value
of the loss function, which measures the loss of a randomly selected future observation X,

from an unknown distribution. Let TLRY be the true loss rate of misclassifying an

observation from category 7 into category j. The true loss rate for category :, TLRY is

S TIRe

JE]

$ E(LI(X,IX): F)) (3.4)

1¥1

2 =31 P(X,eR,(x):Fili=12, ....8.

TLR,

and the true overall loss rate is
TLR® = 2} bp; TLR. (3.9)

Since loss rate tends to be biased from the true loss rate, excess loss R for category 1

can be defined as

R!= TLR!— LR}
- TR~ 12 LR

7¥1

= 3 B(LYXAX): B — 3 E(LYX,0: F) 36)

- f; li— 717 P{X,SR,(x): F\)

~ 5 i P(X,=R ),
and the overall excess loss rate R“ is

R = Z p; RY. (3.7)

The notation F,; is empirical probability distribution which puts mass 1/#, at each
observation in category & The symbol P{X,eR;(x): ﬁi} indicates probability of

misclassifying an observation X, from the original sample of category ¢ into category ;.

Therefore, the second term of the right side of (3.6) is
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S li-ilt PX=RG: FY =L 35 15y 38)

JF1
the loss rate for category 1.

4. Bootstrap Estimation of the Excess Loss

If the population distributions were known or more data were available, they could be
employed to estimate the true loss rate and to obtain a better estimate. However, the
assumption for the moment is that the population distributions are unknown, and the data
available for the estimate are those for the original sample. Thus the bootstrap estimation
method can be used to assess the statistical accuracy of the estimate given by the sample.
The bootstrap procedures for the estimation of the expected excess loss are presented in four
steps:

Step 1 An empirical probability distribution, F, of the data for category i is constructed
by putting the mass 1/x#; on x,. Bootstrap samples are generated by independent random
sampling with replacement from the empirical probability distributions. The bootstrap samples

for category ¢ can be denoted by

X::(Xa,X:z, Xm ~ id Fz, =1,2,....8 4.

Let »; be the resampling proportion of x; selected in the bootstrap sample of category i

and F,” be the empirical probability distribution of the bootstrap sample of category 7 which
putting mass »; on Xxj.
Step 2: Given the bootstrap samples, the bootstrap classification functions are constructed.
Step 3: A bootstrap estimate of the excess loss is calculated. The bootstrap estimate of

the excess loss for category 7 is

B‘(Rf) = TLR;H_ LR;G
= 3 TLR;*- 3 LR}
_ f E{L5(X,1X"): F)— 2 B{Ly(X,1X): B/ 4.2)

- i =" P{X,eR(X"): F)
=3 =i P{xER(XD: F,
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and the bootstrap estimate of the overall excess loss is
B(R) = 3 b B'(RY). (43)

The first term of the right side of (4.2) is the expectation of the loss function over an X,
from F, , given the entire bootstrap sample. This is equal to the loss rate made in the

original sample of category ¢ by the bootstrap classification functions:

2 li—j* P{X,eR(X"): F}= L ; /5; L% (x4 X7) (4.4)

n;

The second term of the right side of (4.2) indicates the expectation of the loss rate over an
X, from F” | given the entire bootstrap sample. This is the loss rate made in the

bootstrap sample of category i by the bootstrap classification functions:
2 li—jl* P{X,eR(X"): F/}= Zl 2 Le (x /1 X") 7. (4.5)
Therefore, a bootstrap estimate of the excess loss for category ¢ can be rewritten as
“ipay % o o 1
B(R) = 3131 LY XD (=7, (46)

Step 4: The steps from 1 to 3 are repeated some large number NBOOT times, obtaining

independent bootstrap replication. A bootstrap estimate of expected excess loss for category ¢
is

o 1 NBOQT
B(R) = NBOOT ﬁ; B, (R{) 4.7

approximately by the averaging NBOOT replications. The bootstrap estimate of expected
overall excess loss is

B(RY) = i‘l 2. BRY). (48)

The bootstrap estimate of the expected excess loss ‘B(R®) can be used as an estimate of
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the expectation of the true excess loss E(R®). Thus, the bootstrap estimate of the true loss
rate can be calculated by adding the bootstrap estimate of the expected excess loss to the

loss rate as defined by (3.2). The bootstrap estimate of the true loss rate for category ¢ is
B(TLR?) = LR*+ B(R%) (4.9)

and the bootstrap estimate of the true overall loss rate is
B(TLR) = 3 p, BTLRY), (4.10)

When a=0, B(TLR’) is called a bootstrap estimate of the true overall constant loss rate,

and when e=1, B(TLR') is called a bootstrap estimate of the true overall absolute loss
rate. Efron (1979), Singh (1981), and Bickel and Freedman (1981) showed that as few as 100
bootstrap replications may be required to get a reliable estimate of the bias. Based on their
theorv. the bootstrap estimate of the true loss rate converges in probability to the true loss
rate as the sample size and the number of replications approach infinity:

B(TLR}) —* TLR? as n; and NBOOT — oo, 4.11)
These conditions also imply
B(TLR®) —' TLR" (4.12)
5. Evaluating Predictive Ability of Bond Rating Classification

Bond ratings are based, in part, on available statistics depicting a firm's operating and
financial conditions. In addition to quantifiable data, the rater’'s qualitative judgement
concerning the future ability of a firm to make the scheduled interest and principal or sinking
fund payment in time also influences the bond ratings. Under the commercial bank
regulations issued by the Controller of the Currency, bonds rated in the top four categories by
Moody’s- Aaa, Aa, A, Baa- generally considered eligible for bank investment. The Baa
rating, bordering between investment and speculative categories, is the lowest which qualifies
for investment. Therefore, the classification of bonds into investment and speculative
categories as well as the classification of bonds into individual rating categories with a limited
number of independent variables is of interest.

One way of evaluating a model’s performance is to calculate the apparent error rate.
However, if the categories can be ordered or ranked, the use of a loss rate is more
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meaningful for the measuring the misclassification rate. Since the loss rate is typically biased
like the apparent error rate, the bootstrap method can be employed in order to obtain an
approximately unbiased and stable estimate of the true loss rate. In this study, the
predictive ability of five possible models of the bond ratings classifications are compared: (1) a
linear classification model (LCM), (2) a quadratic classification model (QCM), (3) a rank
transformation linear classification model (RLCM), (4) a rank transformation quadratic
classification model (RQCM), (5) logit model (LTM).

In order to obtain the sample, the data was collected on 130 outstanding industrial corporate
bonds for the top six ratings from Moody's industrial manual in 1987 (source: < -&t}w gy A
p.268). Industrial corporate bonds include those issued by manufactures, retails, and the like.
Utilities, banks, other financial firms and transportation companies were eliminated because
they had different financial measures. Table 1 presents the distributions of issues by rating
for both population and sample and shows sample proportion and prior probabilities associated
with their ratings.

Table 1 : Distribution of Bonds by Rating

Rating Aaa Aa A Baa Ba B Total
Sample 9288 20 35 22 18 27 | 130
n %1 6.2 154 26.9 16.9 13.8 20.8 100
Popula isize | 16 41 120 30 44 108 409
~tion % 3.9 10.0 29.3 19.6 10.8 26.4 100

Bond ratings have been proved in previous research to be based, in part, on several
variables depicting a firm’s operating and financial conditions. Since the purpose is to
compare and evaluate predictive Cclassification models and not to discover new rating
determinants, the selection of the independent variables were based on the previous studies.
Therefore, the following proxies for the selected independent variables of the firms were
obtained from Moody’'s Industrial Manual, Moody's Handbook of Common Stocks, and
Standard and Poor’s Stock Report index: (1) X,: size variable = total asset in 100 million
dollars, (2) X,: leverage variable = long term debt / total capital, (3) X3! profitability variable =
net income / total assets, (4) X;' instability variable = coefficient of variation of net income,
and (5) X5 stock ranking(six point scale). Financial ratios from X,- X; were computed using
a five-year sample mean of the annual ratios from 1982 to 1986. The sample mean and
standard deviation of the instability variable were also computed from 1982 to 1986, and the
stock rankings in 1987 were obtained. The assumption of multivariate normality was
examined using the chi-square probability plot. After the natural log transformation were

applied to size and instability variable, a reasonable approximation of the multivariate
normality was obtained.
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5.1 Empirical Results in Binary Classification

The purpose of the section 1s to analyze binary classification into investment and
speculative categories with the use of five classification models with prior probabilities

in Table 1, including the loss rate in the original sample and the bootstrap estimate of the
true loss rate for future sample with 100 bootstrap replications. The constant loss
rates(same as apparent error rates) and the estimate of the true loss rates obtained from five
classification models.

Table 2: Constant and bootstrap estimate of true loss rate

Category LCM QCM RLCM RQCM LTM
Invest ; 82 % 24 % 11.8 % 82 % 59 %
estmen
(8.3) (3.6) (13.7) (8.2) (5.9)
Soeculative 89 46.7 2.2 8.9 4.4
ati
P (126) | (50.3) (4.4) (10.1) (8.0)
Overall 85 189 8.2 8.5 53
(9.9) (21.0) (10.2) (8.9) (6.7)
note: ( ) = bootstrap estimate of true loss rate.

The LTM vyields an overall constant loss rate of 53 2% which is the smallest overall
constant loss rate compared with others classification models. An estimate of the true overall
constant loss rate of the LTM was also superior to the results obtained from the other
classification models. One interesting point from Table 2 is the pattern of constant loss rates.
There is a serious variation in the constant loss rates between categories. The QCM and
RLCM vyielded a much lower constant loss rate for one category and a much higher constant
loss rate for the other category, while the LCM, RQCM, and LTM produced similar constant
loss rates for both categories.

5.2 Empirical Results in Ordered Multiple Classification

Ordered multiple classification models should be evaluated with loss rate because a model
can produce high correct classification rates, but that the spread of the misclassification may
be serious. Therefore, the absolute loss rate as well as the constant loss rate should be
examined for a comparison of predictive power of classification models. The summary of the
constant loss rates and the absolute loss rates are presented in Table 3.

The classification results are generally less satisfactory than those of the binary
classification in Table 2. All classification models classified most Aaa, A, and B bond
correctly and had trouble with Ba bonds. The QCM produced a better result by reducing the
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constant overall loss rate of the LCM by 3.9%, but its spread of misclassification was wider
than the LCM. The RLCM vyielded an overall constant loss rate of 29.5% which is slightly
better than the LCM and its spread of misclassification was relatively narrow. The RQCM
results were better than the RLCM, but the spread of misclassification for certain category
was serious. For example, the difference between the constant loss rate and the absolute loss
rate for category A were surprisingly 11.4%. Conover and Iman’'s (1980) simulation studies
have shown that the RLCM is likely to be better than the LCM, but not as good as the
RQCM when the data are non-normal. The results of this study support their findings. The
LTM resulted in the lowest constant overall loss rate of 242 % and the lowest absolute loss
rae of 252 % when compared with other classification models in the data we examined.
Therefore, the LTM seems to be more successful than the other classification models and can
be used as a prediction model because of its smaller constant loss rate and narrower spread
of the misclassification.

To evaluate classification models’ prediction ability for future bonds, 100 bootstrap
replications were used to calculate the bootstrap estimate of the true loss rate. The bootstrap
estimate of the true constant loss rate and the bootstrap true loss rate based on 100 bootstrap
replications are presented in Table 4. Comparing Table 3 and 4, we can see that both the
constant overall loss rate and the absolute overall loss rate are biased optimistically. The
bootstrap estimate of expected excess loss for each category can be obtained by the difference
between values of Table 3 and Table 4. For example, the bootstrap estimate of expected
excess absolute loss of category A for LCM model was 4.1% by subtracting 25.7% from
29.8%. The linear types of classification models tended to produce a smaller difference
between the loss rate and the true loss rate when compared with the quadratic types of the
classification models.

The LCM produced a constant overall loss rate of 362, on the average, on future data
compared with 30.6% on the original data. The QCM produced the constant overall loss rate
of 26.7% on the original data but yielded an estimate of the true constant overall loss rate of
37% which was even higher than the LCM. The RLCM produced almost same predictive
ability as LCM and yielded a better prediction ability than the RQCM. The RQCM performed
poorly in prediction, yielding an estimate of the true constant overall loss rate of 39% and an
estimate of the true absolute overall loss rate of 49.4%. The LTM produced the best
predictive ability and gave an estimate of the true constant overall loss rate of 30.1% and an
estimate of the true absolute overall loss rate of 32.2%.
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Table 3: Constant and Absolute Loss Rates

Category |loss rate LCM QCM RLCM | RQCM LTM
Ana constant 0 % 0 % 0 % 0% 0%
absolute 0 0 0 0 0
An constant 45 45 35 20 45
absolute 45 50 35 25 45
A constant 25.7 114 25.7 25.7 114
absolute 26.7 11.4 25.7 37.1 11.4
Ban constant 31.8 27.3 36.4 455 31.8
absolute 36.4 36.4 40.9 545 31.8
Ba constant 77.8 38.9 77.8 50 66.7
absolute 33.3 105.6 83.3 50 66.7
B constant 14.8 14.8 11.1 11.1 11.1
absolute 22.2 25.9 14.8 11.1 14.8
constant 30.6 26.7 295 25.0 24.2
overall |\ olute | 340 337 | 320 | 200 25.2

Table 4: Bootstrap Estimates of True Loss Rates

Category |Bootstrap LCM QCM RLCM | RQCM LTM
A constant 53 % | 133 % 81 %! 173 % 59 %
aa absolute | 53 20.8 8.1 24.4 2.4
A constant 49.8 57.7 429 324 529
a4 absolute 49.8 64.5 429 38.3 529
A constant 29.8 20.0 31.1 34.1 16.8

absolute 29.8 20.7 316 482 17.3
B constant 39.0 42.4 446 59.2 40
aa absolute | 453 59.1 510 | 728 419
B constant 84 97.3 82.8 66.4 71.7
5 absolute | 90.3 1146 885 | 698 71.9
B constant 20.5 22.7 17.0 21.9 17.0
absolute 31.7 389 24.0 30.8 24.0
constant 36.0 37.0 359 39.0 30.1
overall
absolute 40.9 475 39.8 49.4 32.2

6. Conclusions

After developing classification rules, the natural next step is to evaluate the performance of
the classification models. It is usually assumed that the loss of misclassification of one
category to other category is equal. This may be inappropriate in practice when dealing with
ordered categories. Therefore, the loss function should be employed to deal with different
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losses of misclassification as well as the absolute loss rate should be examined. The main
point of this study is the estimation of the true loss rate of classification models when the
sample size is not large. To obtain a more accurate estimate of the true loss rate, the
bootstrap method was used.

Based on the results of predictive power of classification models, the linear types of
classification models were found to be more useful for the determination of bond ratings than
the quadratic types of classification models. In case of ordered multiple categories, the
quadratic types of classification models were not appropriate in predicting bond ratings for
future samples because of possible wider spread of the prediction. The logit model clearly
dominated all classification models in terms of the classification results of the original sample
and prediction ability for future samples. It produced the narrowest spread of
misclassification.
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