• Title/Summary/Keyword: Rate of Substitution

Search Result 542, Processing Time 0.03 seconds

A Study on Mortar Strength as Slag Sand Characteristics (슬래그 모래특성에 따른 모르터의 강도에 관한 연구)

  • 박정우;백민수;김성식;임남기;정재동;정상진
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.10a
    • /
    • pp.383-388
    • /
    • 2000
  • In these days, there are out of natural sands in the construction field. It is required that development of substitute material for natural material. The blast-furnace slag could be a good alternative material in this situation. It can help resource recycling and the protection of environment. This study presents that the strength properties of mortar using air-cooled blast-furnace slag sand and water-cooled blast-furnace slag sand. The mixing design of this study have a few factors, three type of unit water, four types of W/C, five types of substitution rate. When air-cooled furnace slag sand used in mortar, as substitution rate is higher, 3, 7-days compression strength and flexural strength are going up. But, in case of water-cooled furnace slag sand mortar, strengths are going down.

  • PDF

Study on CO2 Emission Reduction Effects of Using Waste Cementitious Powder as an Alternative Raw Material

  • Park, Dong-Cheon;Kwon, Eun-Hee;Hwang, Jong-Uk;Ahn, Jae-Cheol
    • Journal of the Korea Institute of Building Construction
    • /
    • v.14 no.2
    • /
    • pp.187-194
    • /
    • 2014
  • With environmental regulations continuously being strengthened internationally the need to control environmental pollution and environmental load is emerging in Korea. The purpose of this study is to seek methods or using waste cementitious powder as an alternative raw material for limestone through the optimization of raw material and to quantitatively analyze the resulting reduction of $CO_2$ emission in order to contribute to solving the issue of waste, which is the biggest issue in relation to construction and global warming. The results of the study, show that waste cementitious powder can be used as an alternative raw material for limestone at OPC level, but it was also found that mixing fine aggregate cementitious powder into waste cementitious powder significantly affected the substitution rate for limestone with waste cementitious powder and the reduction of greenhouse gas. In particular, when fine aggregate cementitious powder was used at a rate of 0~20%, the substitution rate for limestone and the reduction in the rate of greenhouse gas emission was significantly reduced. It is thought that a technique to efficiently separate and discharge the fine aggregate cementitious powder mixed in waste cementitious powder needs to be developed in the future.

Radon Adsorption Characteristics of Blast Furnace Slag Matrix Using Bamboo Activated Carbon (대나무 활성탄을 활용한 고로슬래그 경화체의 라돈흡착 특성)

  • Park, Chae-Wool;Lee, Jae-Hun;Lee, Sang-Soo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2019.05a
    • /
    • pp.27-28
    • /
    • 2019
  • Recently, a bed company detected a radon more than Red Politics and became a hot topic of conversation. This has led to increased interest in radon, and a number of free-of-charge bodies have also been established to recognize the dangers of radon. In addition, the Korean Institute of Geological and Resource Research is planning to assist the installation of radon alarm systems in 10,000 households nationwide, free of charge. Since radon is a colorless, odorless and tasteless gas that causes lung cancer, it aims to reduce lung cancer incidence by absorbing radon using bamboo activated carbon as a way to reduce it. Due to the use of bamboo activated carbon, radon concentration per hour tends to decrease as substitution rate increases, and table flow tends to decrease as substitution rate increases. Through this experiment, 30% of the replacement rate of bamboo activated carbon is judged to be the most suitable replacement rate.

  • PDF

Human intronless disease associated genes are slowly evolving

  • Agarwal, Subhash Mohan;Srivastava, Prashant K.
    • BMB Reports
    • /
    • v.42 no.6
    • /
    • pp.356-360
    • /
    • 2009
  • In the present study we have examined human-mouse homologous intronless disease and non-disease genes alongside their extent of sequence conservation, tissue expression, domain and gene ontology composition to get an idea regarding evolutionary and functional attributes. We show that selection has significantly discriminated between the two groups and the disease associated genes in particular exhibit lower $K_{a}$ and $K_{a}/K_{s}$ while $K_{s}$ although smaller is not significantly different. Our analyses suggest that majority of disease related intronless human genes have homology limited to eukaryotic genomes and their expression is localized. Also we observed that different classes of intronless disease related genes have experienced diverse selective pressures and are enriched for higher level functionality that is essentially needed for developmental processes in complex organisms. It is expected that these insights will enhance our understanding of the nature of these genes and also improve our ability to identify disease related intronless genes.

Characterization of Concrete Composites with Mixed Plastic Waste Aggregates (복합 폐플라스틱 골재 치환 콘크리트의 기초 물성 평가)

  • Lee, Jun;Kim, Kyung-Min;Cho, Young-Keun;Kim, Ho-Kyu;Kim, Young-Uk
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.8 no.3
    • /
    • pp.317-324
    • /
    • 2020
  • Plastic wastes generated from domestic waste are separated by mixed discharge with foreign substances, and the cost of the separation and screening process increases, so recycling is relatively low. In this study, as a fundamental study for recycling mixed plastic wastes generated from domestic waste into concrete aggregates, changes in concrete properties according to the plastic waste types and the substitution rate were evaluated experimentally. The mixed plastic waste aggregate(MPWA) was found to have a lower density and a higher absorption rate compared to the coarse aggregate with good particle size distribution. On the other hand, the single plastic waste aggregate(SPWA) was composed of particles of uniform size, and both the density and the absorption rate were lower than that of the fin e aggregate. It was found that the MPWA substitution concrete did not cause a material separation phenomenon due to a relatively good particle size distribution even with the largest amount of plastic waste substitution, and the amount of air flow increased little. The compressive strength and flexural strength of the PWA substitution concrete decreased as the amount of substitution of the PWA increased due to the low strength of the PWA, the suppression of the cement hydration reaction due to hydrophobicity, and the low adhesion between the PWA and the cement paste. It was found that the degree of deterioration in compressive strength and flexural strength of concrete substituted with MPWA having good particle size distribution was relatively small.

Analysis on the inhibitory effects of frozen pepper imports from China by tariff-rate quota, a trade policy tool using a structural equation model

  • Hong, Seungjee;Han, Sukho;Jang, Heesoo
    • Korean Journal of Agricultural Science
    • /
    • v.47 no.2
    • /
    • pp.337-347
    • /
    • 2020
  • Since 2012, despite the fact that tariff rate quotas (TRQ) in the form of dried peppers has not been imported, the imports of pepper-related items such as low- tariff frozen peppers (27%) and other sauces (45%) have increased, there has been a problem in the domestic pepper industry, in which the domestic self-sufficiency rate has declined. The purpose of this study was to find out whether the operation of chili pepper TRQ has the effect of suppressing the imports of pepper-related items from China. We analyzed the import substitution effect (import suppression effect) through causal analysis of the imports of red pepper TRQ, frozen peppers, and other sauces using the structural equation model analysis method. As a result of the hypothetical scenario analysis, when the government imports and releases 7,185 tons of pepper TRQ in 2019/20 (scenario), private imports were estimated to decrease by only 3,060 tons. In other words, the import substitution effect between imported items was estimated to decrease about 2,079 tons of private dried peppers, and about 981 tons of imported pepper-related items. There was an effect of suppressing the imports of pepper-related items such as frozen peppers, but it was analyzed to be insignificant. That reason was that the replacement substitution elasticity of the pepper-related items for TRQ import was less than 1 (inelastic). Therefore, it is judged that the government's operation of the pepper TRQ is preferably focused on stabilizing domestic prices rather than focusing on import control of pepper-related items.

Values of travel time reliability (통행시간 신뢰성 가치 산정에 관한 연구)

  • Chang, Justin Su-Eun;Kang, Ji-Hye
    • Journal of Korean Society of Transportation
    • /
    • v.26 no.6
    • /
    • pp.133-142
    • /
    • 2008
  • The term, travel time reliability, refers to variations in journey time that travelers cannot predict. This issue has been one of the main research topics in transport studies. This paper, especially, investigates the value of travel time reliability. The marginal substitution rate method is suggested as the way for the valuation and travelers' stated preference data are collected based on a choice experiment. A mode choice model is estimated using the data surveyed. The parameters of travel costs and travel time reliability from the model are used to calculate the marginal substitution rate that is interpreted as the value of travel time reliability. The value is arranged by travel areas of intercity and urban trips and by journey purposes of working and non-working types. The result of this research is expected to be helpful of conducting more cautious economic feasibility studies of transport schemes.

UPV Prediction Method on Compressive Strength of High Strength Concrete Mixed with Non-Sintered Hwangto at Early Age (초기 재령에서 비소성 황토 혼입 고강도 콘크리트의 압축강도 발현 예측을 위한 초음파 속도법 검토)

  • Young-Jin Nam;Won-Chang Kim;Hyeong-Gil Choi;Gyu-Yong Kim;Tae-Gyu Lee
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.11 no.2
    • /
    • pp.105-111
    • /
    • 2023
  • In this study, the mechanical properties of high-strength concrete according to the substitution rate of NSH(Non-sintered Hwangto) as an alternative material for cement were measured and evaluated. Through UPV(Ultrasonic pulse velocity) analysis, the compressive strength prediction equation was proposed, and the substitution rate of NSH was set at 15 % and 30 %. The evaluation items were compressive strength and UPV, and the curing period was set to 24 hours. In compressive strength and UPV, as the NSH substitution rate increased, lower strength and lower UPV were shown. In addition, the correlation number(R2 ) between compressive strength and UPV was 0.99 for NC(Normal Concrete), 0.97 for NSHC(Non-sintered Hwangto Concrete)33-15, and 0.94 for NSHC33-30.

Improvement of $^{4}I_{11/2}{\to}^{4}I_{13/2}$ Transition Rate and Thermal Stabilities in $Er^{3+}-Doped\;TeO_2-B_2O_3\;(GeO_2)-ZnO-K_2O$ Glasses

  • Cho, Doo-Hee;Choi, Yong-Gyu;Kim, Kyong-Hon
    • ETRI Journal
    • /
    • v.23 no.4
    • /
    • pp.151-157
    • /
    • 2001
  • Spectroscopic and thermal analysis indicates that tellurite glasses doped with $B_2O_3$ and $GeO_2$ are promising candidate host materials for wide-band erbium doped fiber amplifier (EDFA) with a high 980 nm pump efficiency. In this study, we measured the thermal stabilities and the emission cross-sections for $Er^{3+}:^{4}I_{13/2}\;{\to}\;^{4}I_{15/2}$ transition in this tellurite glass system. We also determined the Judd-Ofelt parameters and calculated the radiative transition rates and the multiphonon relaxation rates in this glass system. The 15 mol% substitution of $B_2O_3$ for $TeO_2$ in the $Er^{3+}-doped\;75TeO_2-20ZnO-5K_2O$ glass raised the multiphonon relaxation rate for $^4I_{11/2}\;{\to}\;^4I_{13/2}$ transition from 4960 $s^{-1}$ to 24700 $s^{-1}$, but shortened the lifetime of the $^4I_{13/2}$ level by 14 % and reduced the emission cross-section for the $^4I_{13/2}\;{\to}\;^4I_{15/2}$ transition by 11%. The 15 mol% $GeO_2$ substitution in the same glass system also reduced the emission cross-section but increased the lifetime by 7%. However, the multiphonon relaxation rate for $^4I_{11/2}{\to}^4I_{13/2}$ transition was raised merely by 1000 $s^{-1}$. Therefore, a mixed substitution of $B_2O_3$ and $GeO_2$ for $TeO_2$ was concluded to be suitable for the 980 nm pump efficiency and the fluorescence efficiency of $^4I_{13/2}{\to}^4I_{15/2}$ transition in $Er^{3+}-doped$ tellurite glasses.

  • PDF

Mechanical Properties of Lightweight Aggregate Concrete according to the Substitution Rate of Natural Sand and Maximum Aggregate Size (천연모래 치환율과 경량 굵은 골재 최대 크기에 따른 경량 골재 콘크리트의 역학적 특성)

  • Sim, Jae-Il;Yang, Keun-Hyeok
    • Journal of the Korea Concrete Institute
    • /
    • v.23 no.5
    • /
    • pp.551-558
    • /
    • 2011
  • The effect of the maximum aggregate size and substitution rate of natural sand on the mechanical properties of concrete is evaluated using 15 lightweight aggregate concrete mixes. For mechanical properties of concrete, compressive strength increase with respect to age, tensile resistance, elastic modulus, rupture modulus, and stress-strain relationship were measured. The experimental data were compared with the design equations specified in ACI 318-08, EC2, and/or CEB-FIP code provisions and empirical equations proposed by Slate et al., Yang et al., and Wang et al. The test results showed that compressive strength of lightweight concrete decreased with increase in maximum aggregate size and amount of lightweight fine aggregates. The parameters to predict the compressive strength development could be empirically formulated as a function of specific gravity of coarse aggregates and substitution rate of natural sand. The measured rupture modulus and tensile strength of concrete were commonly less than the prediction values obtained from code provisions or empirical equations, which can be attributed to the tensile resistance of lightweight aggregate concrete being significantly affected by its density as well as compressive strength.