• Title/Summary/Keyword: Rate of Pressure Rise

Search Result 280, Processing Time 0.032 seconds

Comparison of DME HCCI Operating Ranges for the Thermal Stratification and Fuel Stratification based on a Multi-zone Modeling (Multi-zone 모델링을 통한 온도성층화와 농도성층화가 존재하는 DME HCCI 엔진의 운전영역에 관한 수치해석연구)

  • Jeong, Dong-Won;Lim, Ock-Taeck
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.19 no.2
    • /
    • pp.35-41
    • /
    • 2011
  • This work investigates the potential of in-cylinder thermal stratification and fuel stratification for extending the operating ranges in HCCI engines, and the coupling between thermal stratification and fuel stratification. Computational results areemployed. The computations were conducted using both a custom multi-zone version and the standard single-zone version of the Senkin application of the CHEMKINII kinetics rate code, and kinetic mechanism for di-methyl ether (DME). This study shows that the potential of thermal stratification and fuels stratification for extending the high-load operating limit by a staged combustion event with reduced pressure-rise rates is very large. It was also found that those stratification offers good potential to extend low-load limit by a same mechanism in high-load. However, a combination of thermal stratification and fuel stratification is not more effective than above stratification techniques for extending the operating ranges showing similar results of fuel stratification. Sufficient condition for combustion (enough temperature for) turns misfire in low-load limit to operate engines, which also leads to knock in high-load limit abruptly due to the too high temperature with high. DME shows a potential for maximizing effect of stratification to lower pressure-rise rate due to the characteristics of low-temperature heat release.

Variations of Air Temperature, Relative Humidity and Pressure in a Low Pressure Chamber for Plant Growth (식물생장용 저압챔버 내의 기온, 상대습도 및 압력의 변화)

  • Park, Jong-Hyun;Kim, Yong-Hyeon
    • Journal of Bio-Environment Control
    • /
    • v.18 no.3
    • /
    • pp.200-207
    • /
    • 2009
  • This study was conducted to analyze the variations of air temperature, relative humidity and pressure in a low pressure chamber for plant growth. The low pressure chamber was composed of an acrylic cylinder, a stainless plate, a mass flow controller, an elastomer pressure controller, a read-out-box, a vacuum pump, and sensors of air temperature, relative humidity, and pressure. The pressure leakage in the low pressure chamber was greatly affected by the material and connection method of tubes. The leakage rate in the low pressure chamber with the welding of the stainless tubes and a plate decreased by $0.21kPa{\cdot}h^{-1}$, whereas the leakage in the low pressure chamber with teflon tube and rubber O-ring was given by $1.03kPa{\cdot}h^{-1}$. Pressure in the low pressure chamber was sensitively fluctuated by the air temperature inside the chamber. An elastomer pressure controller was installed to keep the pressure in the low pressure chamber at a setting value. However, inside relative humidity at dark period increased to saturation level.. Two levels (25 and 50kPa) of pressure and two levels (500 and 1,000sccm) of mass flow rate were provided to investigate the effect of low pressure and mass flow rate on relative humidity inside the chamber. It was concluded that low setting value of pressure and high mass flow rate of mixed gas were the effective methods to control the pressure and to suppress the excessive rise of relative humidity inside the chamber.

A Design Procedure for a Multi-Stage Axial Compressor Using the Stage-Stacking Method (단축적방법을 이용한 다단 축류압축기의 설계)

  • 강동진
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.6
    • /
    • pp.1598-1603
    • /
    • 1994
  • A preliminary design procedure for a multi-stage axial compressor is developed, which is based on the stage-stacking method. It determines the flow coefficient which gives rise to the design conditions required such as pressure ratio, mass flow rate and rotational speed for a given specific mass flow rate at inlet to a compressor. With this flow coefficient, blade radii, every stage and compressor performance characterics such as stage pressure ratio, adiabatic efficiency etc. are calculated by stacking each stage performance characteristics. It is shown that there is an optimum number of stage which results in the maximum of compressor overall efficiency for a given specific mass flow rate at inlet to a compressor. A test design was tried for three different geometric design constraints, and comparison with a previous study shows that present procedure could be used reliably in determining the number of compressor stage in preliminary design stage.

A study on the explosion properties and Autoignition Temperature of a food additive Dusts (식품분진의 폭발 특성과 발화온도에 관한 연구)

  • 안형환
    • Proceedings of the Safety Management and Science Conference
    • /
    • 2001.05a
    • /
    • pp.301-310
    • /
    • 2001
  • A study for the dangerous properties measurment of dust explosion was attended by the various dust concentration on Anthraquinone, Sodiumbenzoic acid, Corn starch, soy sauce powder, and cheese powder. As the result, maximum explosion pressure, the maximum rate of pressure rise, autoigntion temperature, and the water content of dust on lower limit explosion concentration was obtained as follows 1. The lower limit explosion concentration on soy sauce powder with the humidity of 65 to 90% increased by increasing the con tent of moisture, and the effect of dry air and moisture air decreased better in make of dry air. 2. The effect of a various dust concentration on autoigntion temperatures is investigated, If the vessel of dust explosion is small size and the easiness of autoignition was controled by air within the vessel, because it was better decreased air with increasing of dust concentration 3. The maximum explosion pressures of Anthraguinone, sodiumbenzoic acid, com starch, soy sauce powder, and cheese powder were 1.0g/$\ell$, 1.0g/$\ell$, 1.5g/$\ell$, 1.5g/$\ell$, and 1.5g/$\ell$, respectively, and the maximum rate of pressure rise were 0.5g/$\ell$, 0.5g/$\ell$, 1.0g/$\ell$, 1.0g/$\ell$, and 1.0g/$\ell$, respectively.

  • PDF

Experimental Study on Combustion Characteristics of Biodiesel Waste Cooking Oil in Marine Diesel Engine (선박디젤기관에서 바이오디젤 폐식용유의 연소특성에 대한 실험적 연구)

  • Cho, Sang-Gon
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.39 no.4
    • /
    • pp.381-386
    • /
    • 2015
  • Environmental pollution and alternative energy has attracted increasing interest. The use of diesel engines is expected to increase in the world owing to their fuel economy. The problem of air pollution emissions from marine engines is causing a major concern in many areas. An alternative fuel was introduced as an environmentally friendly fuel to reduce the toxic emissions from conventional fossil fuels. Biodiesel fuel, which is a renewable energy is highlighted as environmentally friendly energy. This energy can be operated in regular diesel engines when it is blended with invariable ratios without making changes. In this study, a bio-diesel fuel was produced from waste cooking oil and applied to a marine diesel engine to examine the effects on the characteristics of combustion. Waste cooking oil contains a high cetane number and viscosity component, a low carbon and oxygen content. As a result, the brake specific fuel consumption was increased, and the cylinder pressure, rate pressure rise and rate of heat release were decreased.

Numerical study on extinction and acoustic response of diluted hydrogen-air diffusion flames with detailed and reduced chemistry (상세 및 축소 반응 메커니즘을 이용한 희석된 수소-공기 확산화염의 소염과 음향파 응답 특성에 관한 수치해석)

  • Son, Chae-Hun;Jeong, Seok-Ho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.11
    • /
    • pp.1527-1537
    • /
    • 1997
  • Extinction characteristics and acoustic response of hydrogen-air diffusion flames at various pressures are numerically studied by employing counterflow diffusion flame as a model flamelet in turbulent flames in combustion chambers. The numerical results show that extinction strain rate increases linearly with pressure and then decreases, and increases again at high pressures. Thus, flames are classified into three pressure regimes. Such nonmonotonic behavior is caused by the change in chemical kinetic behavior as pressure rises. The investigation of acoustic-pressure response in each regime, for better understanding of combustion instability, shows different characteristics depending on pressure. At low pressures, pressure-rise causes the increase in flame temperature and chain branching/recombination reaction rates, resulting in increased heat release. Therefore, amplification in pressure oscillation is predicted. Similar phenomena are predicted at high pressures. At moderate pressures, weak amplification is predicted since flame temperature and chain branching reaction rate decreases as pressure rises. This acoustic response can be predicted properly only with detailed chemistry or proper reduced chemistry.

Vacuum Characteristic of a Chamber Made of Mild Steel

  • Park, Chongdo;Ha, Taekyun;Cho, Boklae
    • Applied Science and Convergence Technology
    • /
    • v.24 no.4
    • /
    • pp.84-89
    • /
    • 2015
  • The base pressure and outgassing rate of a mild steel chamber were measured and compared to those of a stainless steel chamber. A combined sputter-ion and non-evaporable getter pump with a nominal pumping speed of 490 l/s generated the base pressure of $2.7{\times}10^{-11}$ mbar in the mild steel chamber and $1.2{\times}10^{-10}$ mbar in the stainless steel chamber. The rate-of-rise measurements show that the mild steel has an extremely low outgassing rate of $2.6{\times}10^{-13}$ mbar $ls^{-1}cm^{-2}$, which is about one-order of magnitude smaller than the outgassing rate of the stainless steels. Vacuum annealing of the mild steel at $850^{\circ}C$ reduced the outgassing rate further to $8.8{\times}10^{-14}$ mbar $ls^{-1}cm^{-2}$, which was comparable to the outgassing rate of a heat treated stainless steel for extreme-high vacuum use.

Analysis of impact factors affecting on the stack effect in high-rise building (고층빌딩 연돌 현상의 영향인자 분석)

  • Oh, Jin-Hwan;Song, Doo-Sam;Yoon, Sung-Min;Nam, Yujin
    • KIEAE Journal
    • /
    • v.16 no.3
    • /
    • pp.95-101
    • /
    • 2016
  • Purpose: Recently, high-rise buildings are popular in korea due to high rate of land usage and cost performance in urban area. However, high-rise building causes several problems such as safety issues, cooling/heating load, stack effect, disaster prevention etc. The stack effect is one of the representative problems. Even though there are many researches on stack effect, there are few studies on design guideline considering local condition. Method: This study focuses on the change of pressure distribution according to the design factors which affects the airflow in high-rise residential buildings by simulation analysis. In this study, city, building floor, stairwell door leakage area, elevator door leakage area and changes of layout were considered ad the design factor. Result: The simulation results indicate that building height and ambient air temperature are significant design factor for stack effect.

Energy Balance Analysis of 30 t Thrust Level Liquid Rocket Engine (추력 30톤급 액체로켓엔진의 에너지 밸런스 해석)

  • Cho, Won-Kook;Park, Soon-Young;Kim, Chul-Woong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.5
    • /
    • pp.563-569
    • /
    • 2012
  • An energy balance analysis is conducted for a 30 t thrust level liquid rocket engine. The relations between thrust and combustion pressure, between thrust and propellant flow rate, and between combustion pressure and fuel pump pressure rise are compared against those indicated by a published database of the existing rocket engines. A combustion pressure higher than the old design value is obtained, implying that the present design is high-performance oriented. The thrust to propellant flow rate ratio is the same as that of the existing engines, indicating that the specific impulse performance is at the usual level. The fuel pump pressure rise is found to be slightly high when the combustion pressure is considered, and it is attributed to the pressure budget of the present ground test engine not being optimized.

An Experimental Study on the Performance of Turbocharged Diesel Engine (터보과급 디이젤기관의 성능에 관한 실험적 연구)

  • Chae, J.O.;Chung, S.C.;Baek, J.H.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.2 no.6
    • /
    • pp.76-86
    • /
    • 1994
  • Combustion of diesel engine depends on the mixing of air and evaporating fuel during ignition delay greatly. Variation of air-fuel mixing rate and ignition delay for engine operating condition causes difference of combustion, performance and exhaust emissions. This study is investigated in a turbocharged diesel engine of IDI swirl chamber type. In the results, As injection timing is advanced until $12.6^{\circ}$ BTC, ignition delay decreases. NOx concentration and smoke level in exhaust gas increases for advanced injection timing Ignition delay, combustion period, pressure rise rate and exhaust gas temperature are increased with increasing engine speed. And ignition delay at high load is more decreased than that at low load. Ignition delay and combustion period are decreased with increasing intake pressure. Power increases, temperature and CO, NOx concentration in exhaust gas decreases as intake pressure increases. With increasing load, ignition delay is decreased and combustion period, motoring pressure are increased.

  • PDF