DOI QR코드

DOI QR Code

Energy Balance Analysis of 30 t Thrust Level Liquid Rocket Engine

추력 30톤급 액체로켓엔진의 에너지 밸런스 해석

  • 조원국 (한국항공우주연구원, 엔진팀) ;
  • 박순영 (한국항공우주연구원, 엔진팀) ;
  • 김철웅 (한국항공우주연구원, 엔진팀)
  • Received : 2011.12.13
  • Accepted : 2012.02.27
  • Published : 2012.05.01

Abstract

An energy balance analysis is conducted for a 30 t thrust level liquid rocket engine. The relations between thrust and combustion pressure, between thrust and propellant flow rate, and between combustion pressure and fuel pump pressure rise are compared against those indicated by a published database of the existing rocket engines. A combustion pressure higher than the old design value is obtained, implying that the present design is high-performance oriented. The thrust to propellant flow rate ratio is the same as that of the existing engines, indicating that the specific impulse performance is at the usual level. The fuel pump pressure rise is found to be slightly high when the combustion pressure is considered, and it is attributed to the pressure budget of the present ground test engine not being optimized.

추력 30톤급 액체로켓엔진에 대한 에너지 밸런스 해석을 수행하였다. 추력-연소압 관계, 추력-추진 제유량 관계 및 연소압-연료펌프상승 관계를 문헌에 공개된 실존 로켓엔진에 대한 데이터베이스와 비교하였다. 참고문헌의 분류에 따른 구형 설계보다 연소압이 높으며 이는 고성능 지향적이라는 의미를 가진다. 추력-추진제유량 비율은 기존엔진과 유사한 수준이었으며 이는 통상 수준의 비추력 성능을 의미한다. 연소압을 감안한 연료펌프의 압력상승은 높은 수준이며 이는 본 연구의 고려 대상인 엔진이 지상시험용으로서 차압설정이 최적화되지 않았기 때문이다.

Keywords

References

  1. Cho, G.R. et al., 2008, Korea Space Launch Vehicle (6).
  2. Kim, S.-H., Nam, C.-H., Kim, C., Moon, Y. and Seol, W.-S., 2010, "Study on Turbopump-Gas Generator Open-Loop Coupled Test," Trans. of the KSME(B), Vol.34, No.5, pp.563-568.
  3. O'Brien, C.J. and Ewen, R.L., 1981, Advanced Oxygen-Hydrocarbon Rocket Engine Study, NASA-CR-161748
  4. Miyajima, H. and Nakahashi, K., 1984, "Specific Impulse Analysis of the LE-5 Engine," AIAA-84-1224
  5. Goertz, C., 1995, "A Modular Method for the Analysis of Liquid Rocket Engine Cycles," AIAA 95-2966.
  6. McHugh, B., 1995, "Numerical Analysis of Existing Liquid Rocket Engines as a Design Starter," AIAA-95-2970.
  7. Way, D. W. and Olds, J. R., 1998, "SCORES: Developing an Object-Oriented Rocket Propulsion Analysis Tool," AIAA 98-3227.
  8. Kauffmann, J., Herbertz, A. and Sippel, M., 2001, "Systems Analysis of a High Thrust, Low-Cost Rocket Engine," 4th Int. Conf. on Green Propellants for Space Prop.
  9. Bradford, J.E., Charania, A. and St. Germain, B., 2004, "REDTOP-2: Rocket Engine Design Tool Featuring Engine Performance, Weight, Cost, and Reliability," AIAA-2004-3514.
  10. Sciorelli, F., Jones, M. and Forde, S., 2005, "Collaborative Propulsion System Analysis Tool for Pumpfed Liquid Rocket Engines," AIAA 2005-4441.
  11. Shelton, J.D., Frederick Jr., R.A. and Wilhite, A.W., 2006, "Launch Vehicle Propulsion Design with Multiple Selection Criteria," J. Spacecraft and Rockets, Vol. 43, No. 4, pp.893-902. https://doi.org/10.2514/1.16919
  12. Park, S.Y. and Nam, C.H., 2005, Program for Solving the Energy Balance Problem, KARI-REGTM-2005-001-v.1-rev.1.
  13. Cho, W.K., Park, S.Y. and Seol, W.S., 2008, "Development of Performance Analysis Program for Gas Generator Cycle Rocket Engine," J. of the KSPE, Vol.12, No.5, pp.18-25.
  14. Ballard, R.O. and Olive, T., "Development Status of the NASA MC-1 (Fastrac) Engine," AIAA-2000-3898.
  15. Cho, W.K., 2006, Evaluation of Specific Impulse of a Gas Generator Cycle Rocket Engine, KARI-RETTM-2006-009-v.1-rev.1.
  16. Kim, C.W., Park, S.Y. and Nam, C.H., 2009, Operating Mode Analysis of Turbo Pump-Gas Generator-Combustor System, KARI-RET-TM-2009-009.