• 제목/요약/키워드: Rate Limit

Search Result 1,787, Processing Time 0.025 seconds

Formulation of forming limit diagram based on strain-rate potential (소성 변형률 포텐셜에 기초한 성형 한계도의 정식화)

  • Kim D.;Chung K.;Kim K. J.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.10a
    • /
    • pp.156-159
    • /
    • 2004
  • Most formulations for a forming limit diagram (FLD) have been based on yield stress potentials defined in the stress field. Nevertheless, there are formulations where potentials defined in the stain-rate field are especially convenient to formulate the rigid plastic material. Based on a strain-rate potential proposed for materials exhibiting planar anisotropic, the formulations for the forming limit diagram has been developed applying M-K theory. As verification example, the formulation is applied for anisotropic AA5182-O sheet. The good verification results show that the formulation for the forming limit diagram has been successfully developed.

  • PDF

Handling Deflection Limit in Open-Loop-Onset-Point PIO Analysis (Open-Loop-Onset-Point PIO 해석의 변위한계)

  • Park, Sang-Hyuk
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.2
    • /
    • pp.135-140
    • /
    • 2010
  • A new treatment is proposed to handle a deflection limit in the open-loop-onset-point (OLOP), which is commonly used in the prediction of pilot in-the-loop oscillation (PIO) due to a rate saturation. The new approach is motivated by the frequency response of a stand-alone actuator in that, unlike the suggestion by the original OLOP procedure, the rate limit onset is not delayed to a higher frequency by a deflection limit. Indeed, if a feedback control loop is closed, the rate limit onset can be shifted to a lower frequency since the controller tends to react with larger commands when deflection limited. The amplitude of the command at this onset frequency is combined with the deflection limit to estimate the associated gain reduction in the open-loop-onset-point in the final step of the OLOP process. The comparison of the new approach with the previous method reveals that an inaccurate optimism which can occur in the previous method is corrected by the proposed treatment.

A Repair-Time Limit Replacement Model with Imperfect Repair (불완전 수리에서의 수리시간한계를 가진 교체모형)

  • Chung, Il Han;Yun, Won Young
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.39 no.4
    • /
    • pp.233-238
    • /
    • 2013
  • This article concerns a profit model in a repair limit replacement problem with imperfect repair. If a system fails, we should decide whether we repair the failed system (repair option) or replace it by new one (replacement option with a lead time). We assume that repair times are random variables and can be estimated before repair with estimation error. If the estimated repair time is less than the specified limit (repair time limit), the failed unit is repaired but the unit after repair is different from the new one (imperfect repair). Otherwise, we order a new unit to replace the failed unit. The long run average profit (expected profit rate) is used as an optimization criterion and the optimal repair time limit maximizes the expected profit rate. Some special cases are derived.

Effect of Nitriding on Fatigue Crack Initiation and Growth Rate in Ni-Cr-Mo Steel (SNCM강의 피로균열의 발생 및 전파속도에 미치는 질화처리의 영향)

  • Kim, Min-Gun;Lim, Bok-Kyu
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.16 no.6
    • /
    • pp.315-319
    • /
    • 2003
  • Effect of nitriding on fatigue crack initiation and growth rate has been studied in Ni-Cr-Mo steel. Specimens were nitrided at $860^{\circ}C$ for 15 hr. The fatigue limit of nitrided specimens were superior to those ofannea1ed($860^{\circ}C$, 15 hr) specimens. Based on detailed observations of slip band and micro crack initiation, it is concluded that the excellent fatigue limit of nitrided specimens is attributed to improved slip initiation resistance by nitriding. The characteristic of fatigue crack growth rate of nitrided specimens was investigated by comparing with those of annealed specimens. It was found that the crack growth rate was markedly decreased and the threshold stress intensity factor range was improved by nitriding. It is concluded that the excellent fatigue limit of nitrided specimens is also attributed to improved fatigue crack growth rate and threshold stress intensity factor range by nitriding.

Effect of Nitriding on Fatigue Crack Initiation and Growth Rate in SNCM (SNCM강의 피로균열의 발생 및 전파속도에 미치는 질화처리의 영향)

  • Kim, Min-Gun;Lee, Sang-Ho
    • Journal of Industrial Technology
    • /
    • v.23 no.A
    • /
    • pp.3-7
    • /
    • 2003
  • Effect of nitriding on fatigue crack initiation and growth rate has been studied on SNCM. Specimens were nitrided for 15 hr at $860^{\circ}C$. The fatigue limit of nitrided specimens was superior to that of annealed($860^{\circ}C$, 15 hr) specimens. Based on detailed observations of slip band and micro crack initiation, it is concluded that the excellent fatigue limit of nitrided specimens is attributed to improved slip initiation resistance by nitriding. The characteristic of fatigue crack growth rate of nitrided specimens was investigated and compared with those of annealed specimens. It was found that by nitriding the crack growth rate was markedly decreased and the threshold stress intensity factor range was improved. It is concluded that the excellent fatigue limit of nitrided specimens is also attributed to improved fatigue crack growth rate and threshold stress intensity factor range by nitriding.

  • PDF

Evaluation of the Wind Power Penetration Limit and Wind Energy Penetration in the Mongolian Central Power System

  • Ulam-Orgil, Ch.;Lee, Hye-Won;Kang, Yong-Cheol
    • Journal of Electrical Engineering and Technology
    • /
    • v.7 no.6
    • /
    • pp.852-858
    • /
    • 2012
  • This paper describes evaluation results of the wind power penetration limit (WPPL) and the wind energy penetration (WEP) in the Mongolian central power system (MCPS). A wind power plant (WPP) in a power system possesses an output power limit because the power system must maintain a balance between the generation and consumption of electricity at all times in order to achieve an adequate level of quality. The instantaneous penetration limit (IPL) of wind generation at a load is determined as the minimum of the three technical constraints: the minimum output, the ramp rate capability, and the spinning reserve of the conventional generating units. In this paper, a WPPL is defined as the maximum IPL divided by the peak load. A maximal variation rate (VR) of wind power is a major factor in determining the IPL, WPPL, and WEP. This paper analyzes the effects of the maximal VR of wind power on the WPPL, WEP, and capacity factor (CF) in the MCPS. The results indicate that a small VR can facilitate a large amount of wind energy while maintaining a high CF with increased wind power penetration.

A mechanistic analysis of H2O and CO2 diluent effect on hydrogen flammability limit considering flame extinction mechanism

  • Jeon, Joongoo;Kim, Yeon Soo;Jung, Hoichul;Kim, Sung Joong
    • Nuclear Engineering and Technology
    • /
    • v.53 no.10
    • /
    • pp.3286-3297
    • /
    • 2021
  • The released hydrogen can be ignited even with weak ignition sources. This emphasizes the importance of the hydrogen flammability evaluation to prevent catastrophic failure in hydrogen related facilities including a nuclear power plant. Historically numerous attempts have been made to determine the flammability limit of hydrogen mixtures including several diluents. However, no analytical model has been developed to accurately predict the limit concentration for mixtures containing radiating gases. In this study, the effect of H2O and CO2 on flammability limit was investigated through a numerical simulation of lean limit hydrogen flames. The previous flammability limit model was improved based on the mechanistic investigation, with which the amount of indirect radiation heat loss could be estimated by the optically thin approximation. As a result, the sharp increase in limit concentration by H2O could be explained by high thermal diffusivity and radiation rate. Despite the high radiation rate, however, CO2 with the lower thermal diffusivity than the threshold cannot produce a noticeable increase in heat loss and ultimately limit concentration. We concluded that the proposed mechanistic analysis successfully explained the experimental results even including radiating gases. The accuracy of the improved model was verified through several flammability experiments for H2-air-diluent.

The effect of strain rate on the instability of sheet metal (변형율속도가 판재의 불안정에 미치는 영향)

  • 백남주;한규택
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.12 no.5
    • /
    • pp.935-943
    • /
    • 1988
  • The forming limit diagram is assessed as a means of estimating the forming characteristics of sheet metal and is usually determined experimentally. The strain rates used in the determination are likely to be low. However, often in practice, the strain rates are much higher, so if forming limit diagram is determined at low rates, it may not be appropriate. This paper reconsiders the forming limit diagram for mild steel and aluminum sheet up to variation in strain rate from 10$^{-2}$ sec to 20/sec where its forming has been carried out under oil pressure using a hydraulic bulge test with circular and elliptical dies. To obtain higher strain rate, an impact bulge test had been employed with the same die sets as those used for a hydraulic bulge test. The results obtained are as follows: (1) As the strain rate increases, the fracture pressure increases and the polar height at fracture decreases. (2) Experiment has shown that, in the positive quadrant of the forming limit diagram, the diagram is lowered with increasing strain rate and the effect of strain rate changes according to strain paths and materials..

Forming Limit Diagram of DP590 considering the Strain Rate (변형률속도를 고려한 DP590의 성형한계도)

  • Kim, Seok-Bong;Ahn, Kwang-Hyun;Ha, Ji-Woong;Lee, Chang-Soo;Huh, Hoon;Bok, Hyun-Ho;Moon, Man-Been
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.18 no.1
    • /
    • pp.127-130
    • /
    • 2010
  • This paper deals with the formability of DP590 steel considering the strain rate. The strain hardening coefficient, elongation and r-value were obtained from the static and dynamic tensile test. As strain rate increases from static to 100/s, the strain hardening coefficient and the uniform elongation decrease and the elongation at fracture and r-value decrease to 0.1/s and increase again to 100/s. The high speed forming limit tests with hemi-spherical punch were carried out using the high speed crash testing machine and high speed forming jig. The high speed forming limit of DP590(order of $10^2$/s) decreases compared to the static forming limit(order of $10^{-3}$/s) and the forming limit band in high speed forming test is narrower than that in the static forming test. This tendency may be due to the development of brittleness with increase of stain rate.

An empirical approach to analyzing effects of disease and activity limit on depression prevalence rate in the elderly depending on stress experience: KNHANES Data Analysis (스트레스 경험 유무에 따른 질병 및 활동제약이 고연령층 우울증에 미치는 영향에 관한연구: 국민건강영양조사 자료분석)

  • Jeon, Hyeon Gyu;Sim, Jae Mun;Lee, Kun Chang
    • Korean Journal of Health Education and Promotion
    • /
    • v.33 no.1
    • /
    • pp.13-22
    • /
    • 2016
  • Objectives: By using six years of KNHANES dataset (2008~2013) about 60 ages older people, we analyzed how the depression prevalence rate in the elderly is influenced by disease and activity limit. Especially, to add a sense of more reality, we adopted stress experience as a control variable to see how the depression prevalence rate in the elderly is influenced by disease and activity limit depending on the stress experience. Methods : We adopted six years of KNHANES dataset, indicating that our results were based on long period of time capable of considering temporal patterns in the depression prevalence rate in the elderly. Total 1,160 elderly people in KNHANES were selected for our empirical analyses. Dependent variable is either 0 or 1 depending on whether the elderly people feel depression. Main explanatory variables for our study include disease and activity limit. Logistic regression analysis was applied for two group such as stress experience and non-experience. Results : According to the empirical results, stress factor is found to be significant in explaining the depression in the elderly. Depression prevalence rate increased when the elderly has stress experience: chronical disease(OR=1.650), chronical disease with activity limit(OR=3.388), non-chronical disease with stress(OR=11.841) chronical disease with stress (OR=13.561) and chronical disease with activity limit and stress(OR=28.691). Conclusions: The finding suggest that the Countermeasures of elderly's depression alleviation should include stress management.