• Title/Summary/Keyword: Rate Determining Step

Search Result 232, Processing Time 0.037 seconds

Recent Research Trend in Lateral Flow Immunoassay Strip (LFIA) with Colorimetric Method for Detection of Cancer Biomarkers (암 바이오마커 검출용 비색법 기반 측면 흐름 면역 크로마토그래피 분석법(LFIA) 스트립의 최신 연구 동향)

  • Lee, Sooyoung;Lee, Hye Jin
    • Applied Chemistry for Engineering
    • /
    • v.31 no.6
    • /
    • pp.585-590
    • /
    • 2020
  • Successful early diagnosis of cancer diseases such as lung, prostate, liver and adrenocortical carcinoma is a key step in determining the cost of treatment, survival rate, and cure rate. Most of current cancer diagnosis systems including biopsy, computed tomography (CT), positron emission tomography (PET)-CT, magnetic resonance imaging (MRI), ultrasonography, etc., require expensive and complicated equipment with highly trained human resources. Global medical and scientific communities have thus made numerous efforts on developing effective but rapid disease management system via introducing a wide spectrum of point-of-care medical diagnosis devices. Among them, a lateral flow immunoassay strip technique has gained a great attention due to many advantages such as cost-effectiveness, short inspection time, and user friendly accessibility. In this mini-review, we will highlight recent research trend on the development of colorimetry based LFIA strips for cancer diagnosis and discuss the future research direction and potential applications.

Kinetics and Mechanism of the Oxidation of Alcohols by C9H7NHCrO3Cl (C9H7NHCrO3Cl에 의한 알코올류의 산화반응에서 속도론과 메카니즘)

  • Park, Young-Cho;Kim, Young-Sik;Kim, Soo-Jong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.8
    • /
    • pp.378-384
    • /
    • 2018
  • $C_9H_7NHCrO_3Cl$ was synthesized by reacting $C_9H_7NH$ with chromium (VI) trioxide. The structure of the product was characterized by FT-IR (Fourier transform infrared) spectroscopy and elemental analysis. The oxidation of benzyl alcohol by $C_9H_7NHCrO_3Cl$ in various solvents showed that the reactivity increased with increasing dielectric constant(${\varepsilon}$) in the following order: DMF (N,N'-dimethylformamide) > acetone > chloroform > cyclohexane. The oxidation of alcohols was examined by $C_9H_7NHCrO_3Cl$ in DMF. As a result, $C_9H_7NHCrO_3Cl$ was found to be an efficient oxidizing agent that converts benzyl alcohol, allyl alcohol, primary alcohols, and secondary alcohols to the corresponding aldehydes or ketones (75%-95%). The selective oxidation of alcohols was also examined by $C_9H_7NHCrO_3Cl$ in DMF. $C_9H_7NHCrO_3Cl$ was the selective oxidizing agent of benzyl, allyl and primary alcohol in the presence of secondary ones. In the presence of DMF with an acidic catalyst, such as $H_2SO_4$, $C_9H_7NHCrO_3Cl$ oxidized benzyl alcohol (H) and its derivatives ($p-OCH_3$, $m-CH_3$, $m-OCH_3$, m-Cl, and $m-NO_2$). Electron donating substituents accelerated the reaction rate, whereas electron acceptor groups retarded the reaction rate. The Hammett reaction constant (${\rho}$) was -0.69 (308K). The observed experimental data were used to rationalize hydride ion transfer in the rate-determining step.

A Study on the Solvent Extraction Kinetics of Complex Nickel(Ⅱ) 8-Hydroxyquinolinate by Spectrophotometry (분광광도법에 의한 Ni(Ⅱ)-8-Hydroxyquinolinate의 용매추출 반응속도론)

  • Heung Lark Lee;Oh In-Gyung
    • Journal of the Korean Chemical Society
    • /
    • v.36 no.4
    • /
    • pp.540-545
    • /
    • 1992
  • Kinetics and mechanism on the solvent extraction of nickel(Ⅱ) with 8-hydroxyquinoline (HOx) was studied spectrophotometrically. Absorbance variation was measured by changing the 8-hydroxyquinoline concentration in the chloroform organic phase and the pH values in the aquous phase. By analyzing absorbance data the reaction rate was found to be the first order for 8-hydroxyquinoline concentration and the inverse first one for [H$^+$]. Therefore the rate determining step of the extraction reaction is the formation of the one-to-one metal chelate NiOx$^+$ and the rate equation is as follows; -d[Ni$^{2+}$]/dt = k[Ni$^{2+}$][Ox$^-$] = k'[Ni$^{2+}$][HOx]$_0$/[H$^+$]. The value of k' was evaluated from the slope of plot of log [Ni$^{2+}$]$_0$/[Ni$^{2+}$]$_t$ versus time and the rate constant k was calculated according to the equation k' = k ${\times}$ K$_{HOx}$ / K$_{D,HOx}$. From the temperature dependence of the extraction rate, the activation energy E$_a$ = 6.26 kcal/mol is calculated, and activation parameters, ${\Delta}$G$^{\neq}_{298}$ = 6.59 kcal/mol, ${\Delta}$H$^{\neq}_{298}$ = 5.68 kcal/mol, ${\Delta}$S$^{\neq}_{298}$ = -3.09 eu/mol are estimated.

  • PDF

Isolation and Characterization of Endosome Subpopulation in Chinese Hamster Ovarian Cells

  • Suh, Duk-Joon;Park, Mi-Yeon;Jung, Dong-Keun;Bae, Hae-Rahn
    • The Korean Journal of Physiology
    • /
    • v.30 no.2
    • /
    • pp.197-208
    • /
    • 1996
  • Endosomes lower their internal pH by an ATP-driven proton pump, which is critical to dissociation of many receptor-ligand complexes, the first step in the intracellular sorting of internalized receptors and ligands. Endosomes are known to exhibit n great range of pH values that can vary between 5.0 and 7.0 within a single cell although the factors that regulate endosomal pH remain uncertain. To evaluate the morphological and topological differences of endosomes in the different stages, confocal microscopy was used. The early endosomes labeled with fluorescein isothiocyanate-dextran for 10 min at $37^{\circ}C$ were identifiable at the peripheral and tubule-vesicular endosome compartment. In contrast, the late endosomes formed by 10 min pulse and 20 min trace were located deeper in the cytoplasm and showed more vesicular features than early endosomes. For the purpose of determining whether ATP-dependent acidification was heterogeneous and whether the differences in acidification were attributed to differences in the activity of $Na^{+}-K^{+}$-ATPase and/or $Cl^{-}$ channel, endocytic compartments were fractionated into subpopulation using percoll gradient and measured ATP-dependent acidification. While all fractions exhibited ATP-dependent acidification activity, both the initial rate of acidification and extent of proton translocation were lower in early endosomes and gradually increased in late endosomes. Phosphorylation by PKA and ATP enhanced ATP-dependent acidification in both early and late endosomes, hut there was no difference in the degree of enhancement by phosphorylation between two subpopulations. When ATP-dependent acidification was determined in the presence or absence of vanadate ($Na_{3}VO_{4}$) or ouabain, only early endosomes exhibited the vanadate or ouabain dependent stimulation of acidification activity, suggesting the inhibition of $Na^{+}-K^{+}$-ATPase. Therefore, it seems probable that the inhibition of early endosome acidification by $Na^{+}-K^{+}$-ATPase observed in vitro at least in part plays a physiological role in controlling the acidification of early endosomes in vivo.

  • PDF

A Review of Chlorine Evolution Mechanism on Dimensionally Stable Anode (DSA®) (DSA 전극에서 염소 발생 메커니즘)

  • Kim, Jiye;Kim, Choonsoo;Kim, Seonghwan;Yoon, Jeyong
    • Korean Chemical Engineering Research
    • /
    • v.53 no.5
    • /
    • pp.531-539
    • /
    • 2015
  • Chlor-alkali industry is one of the largest electrochemical processes which annually producing 70 million tons of sodium hydroxide and chlorine from sodium chloride solution. $DSA^{(R)}$ (Dimensionally Stable Anodes) electrodes such as $RuO_2$ and $IrO_2$, which is popular in chlor-alkali process, have been investigated to improve the chlorine generation efficiency. Although DSA electrode has been developed with various researches, understanding of the chlorine evolution mechanism is essential to the development of highly efficient DSA electrode. In this review paper, chlorine generation mechanisms are summarized and that of key factors are identified to systematically understand the chlorine generation mechanism. Rate determining step, effect of pH, reaction intermediate, and electrode crystal structure were intensively overviewed as key factors of the chlorine mechanism.

Rheological and mechanical properties of ABS/PC blends

  • Khan M.M.K.;Liang R.F.;Gupta R.K.;Agarwal S.
    • Korea-Australia Rheology Journal
    • /
    • v.17 no.1
    • /
    • pp.1-7
    • /
    • 2005
  • Acrylonitrile-Butadiene-Styrene (ABS), polycarbonate (PC) and their alloys are an important class of engineering thermoplastics that are widely used for automotive industry, computer and equipment housings. For the process of recycling mixtures of ABS and PC, it is desirable to know how sensitive the blend properties are to changes in compositions. It was for this reason that blends of virgin ABS and virgin PC at five different compositions, namely, $15\%,\;30\%,\;50\%,\;70%$ and $85\%$ by weight of ABS were prepared and characterised by rheological and mechanical measurements. Rheological properties of these blends in steady, oscillatory and transient step shear and mechanical properties, namely, tensile strength, elongation-at-break and Izod impact strength are reported. The results show that PC behaves in a relatively Newtonian manner, but ABS exhibits significant shear thinning. The ABS-rich blends show a trend that is similar to that of ABS, while PC-rich blends, namely $0\%$ and $15\%$, exhibit a nearly Newtonian behaviour. However, at a fixed shear rate or frequency, the steady shear or the dynamic viscosity varied respectively in a non-mono-tonic manner with composition. Except for $15\%$ blend, the viscosities of other blends fall into a narrow band indicating a wide-operation window of varying blend ratio. The blends exhibited a lower viscosity than either of the two pure components. The other noticeable feature was that the blends at $70\%$ and $85\%$ ABS content had a higher G' than pure ABS, indicating an enhancement of elastic effect. The tensile yield strength of the blends followed the 'rule of mixtures' showing a decreasing value with the increase of ABS content in PC. However, the elongation-at-break and the impact strength did not appear to obey this 'rule of mixtures,' which suggests that morphology of the blends also plays a significant role in determining the properties. Indeed, scanning electron micrographs of the fracture surfaces of the different blends validate this hypothesis, and the $15\%$ blend is seen to have the most distinct morphology and correspondingly different behaviour and properties.

New Variable Step-size LMS Algorithm with Low-Pass Filtering of Instantaneous Gradient Estimate (순시 기울기 벡터의 저주파 필터링을 사용한 새로운 가변 적응 인자 LMS 알고리즘)

  • 박장식;문건락;손경식
    • Journal of Korea Multimedia Society
    • /
    • v.4 no.3
    • /
    • pp.230-237
    • /
    • 2001
  • Adaptive filters are widely used for acoustic echo canceler, adaptive equalizer and adaptive noise canceler. Coefficients of adaptive filters are updated by NLMS algorithm. However, Coefficients are misaligned by ambient noises when they are adapted by NLMS algorithm. In this Paper, a method determined the adaptation constant by low-pass filtered instantaneous gradient vector of LMS algorithm using orthognality principles of optimal filter is proposed. At initial states, instantaneous gradient vector, that is the cross-correlation of input signals and estimation error signals, has large value because input signals are remained in estimation error signals. When an adaptive filter is conversed, the cross-correlation will be close to zero. It isn's affected by ambient noises because ambient noises are uncorrelated with input signals. Determining adaptation constant with the cross-correlation, adaptive filters can be robust to ambient noises and the convergence rate doesn't slower As results of computer simulations, it is shown that the performance of proposed algorithm is betted than that of conventional algorithms.

  • PDF

Investigation of Regulatory Mechanism of Flux of Acetyl-CoA in Alcaligenes eutrophus Using PHB-negative Mutant and Transformants Harboring Cloned phbCAB Genes

  • Jung, Young-Mi;Lee, Yong-Hyun
    • Journal of Microbiology and Biotechnology
    • /
    • v.7 no.4
    • /
    • pp.215-222
    • /
    • 1997
  • The regulatory mechanism of the flux of acetyl-CoA in Alcaligenes eutrophus in unbalanced growth conditions was investigated using a PHB-negative mutant and transformants reintroduced PHB-biosynthesis enzymes through the transformation of cloned phbCAB genes. The PHB-negative mutant was defected absolutly in PHB synthase but partially in ${\beta}$-ketothiolase and acetoacetyl-CoA reductase, and excreted substantial amount of pyruvate to culture broth at late growth phase. The excretion was due to the inhibitory effect of acetyl-CoA on the activity of pyruvate dehydrogenase. The cloned phbC and phbCAB genes were transformed to the PHB-negative mutant strain to reintroduce PHB biosythesis enzymes. Pyruvate excretion could be decreased substantially but not completely by transformation of PHB synthase alone, while pyruvate excretion was ceased by transformation of all three PHB biosynthesis enzymes. To identify the most critical PHB biosynthesis enzyme influencing on the flux of acetyl-CoA, the effect of the variation of PHB biosynthesis enzymes on pyruvate dehydrogenase was investigated. ${\beta}$-Ketothiolase influenced the activity of pyruvate dehydrogenase more sensitively than PHB synthase. ${\beta}$-Ketothiolase, the first step enzyme of PHB biosynthesis that condense acetyl-CoA to acetoacetyl-CoA, seems to be the major enzyme determining the flux of acetyl-CoA to PHB biosynthesis or TCA cycle, and the rate of PHB biosynthesis in A. eutrophus.

  • PDF

Crystal Structure of (S)-3-Hydroxybutyryl-CoA Dehydrogenase from Clostridium butyricum and Its Mutations that Enhance Reaction Kinetics

  • Kim, Eun-Jung;Kim, Jieun;Ahn, Jae-Woo;Kim, Yeo-Jin;Chang, Jeong Ho;Kim, Kyung-Jin
    • Journal of Microbiology and Biotechnology
    • /
    • v.24 no.12
    • /
    • pp.1636-1643
    • /
    • 2014
  • 3-Hydroxybutyryl-CoA dehydrogenase is an enzyme that catalyzes the second step in the biosynthesis of n-butanol from acetyl-CoA, in which acetoacetyl-CoA is reduced to 3-hydroxybutyryl-CoA. To understand the molecular mechanisms of n-butanol biosynthesis, we determined the crystal structure of 3-hydroxybutyryl-CoA dehydrogenase from Clostridium butyricum (CbHBD). The monomer structure of CbHBD exhibits a two-domain topology, with N- and C-terminal domains, and the dimerization of the enzyme was mostly constituted at the C-terminal domain. The mode of cofactor binding to CbHBD was elucidated by determining the crystal structure of the enzyme in complex with $NAD^+$. We also determined the enzyme's structure in complex with its acetoacetyl-CoA substrate, revealing that the adenosine diphosphate moiety was not highly stabilized compared with the remainder of the acetoacetyl-CoA molecule. Using this structural information, we performed a series of site-directed mutagenesis experiments on the enzyme, such as changing residues located near the substrate-binding site, and finally developed a highly efficient CbHBD K50A/K54A/L232Y triple mutant enzyme that exhibited approximately 5-fold higher enzyme activity than did the wild type. The increased enzyme activity of the mutant was confirmed by enzyme kinetic measurements. The highly efficient mutant enzyme should be useful for increasing the production rate of n-butanol.

Kinetic Study on Aminolysis of Y-Substituted-Phenyl Picolinates: Effect of H-Bonding Interaction on Reactivity and Transition-State Structure

  • Kim, Min-Young;Kang, Tae-Ah;Yoon, Jung Hwan;Um, Ik-Hwan
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.8
    • /
    • pp.2410-2414
    • /
    • 2014
  • A kinetic study is reported on nucleophilic substitution reactions of Y-substituted-phenyl picolinates (7a-7h) with a series of cyclic secondary amines in 80 mol % $H_2O$/20 mol % DMSO at $25.0{\pm}0.1^{\circ}C$. Comparison of the kinetic results with those reported previously for the corresponding reactions of Y-substituted-phenyl benzoates (1a-1f) reveals that 7a-7h are significantly more reactive than 1a-1f. The Br${\o}$nsted-type plot for the aminolysis of 4-nitrophenyl picolinate (7a) is linear with ${\beta}_{nuc}=0.78$, which is typical for reactions proceeding through a stepwise mechanism with expulsion of the leaving group being the rate-determining step. The Br${\o}$nsted-type plots for the piperidinolysis of 7a-7h and 1a-1f are also linear with ${\beta}_{lg}=-1.04$ and -1.39, respectively, indicating that the more reactive 7a-7h are less selective than the less reactive 1a-1f to the leaving-group basicity. One might suggest that the enhanced reactivity of 7a-7h is due to the inductive effect exerted by the electronegative N atom in the picolinyl moiety, while the decreased selectivity of the more reactive substrates is in accord with the reactivity-selectivity principle. However, the nature of intermediate (e.g., a stabilized cyclic intermediate through the intramolecular H-bonding interaction for the reactions of 7a-7h, which is structurally not possible for the reactions of 1a-1f) is also responsible for the enhanced reactivity with a decreased selectivity.