• Title/Summary/Keyword: Rat stroke model

Search Result 44, Processing Time 0.033 seconds

Attenuation of Brain Injury by Water Extract of Goat's-beard (Aruncus dioicus) and Its Ethyl Acetate Fraction in a Rat Model of Ischemia-Reperfusion

  • Han, Hyung-Soo;Lee, Jong-Won
    • Preventive Nutrition and Food Science
    • /
    • v.16 no.3
    • /
    • pp.217-223
    • /
    • 2011
  • Ischemic stroke constitutes about 80% of all stroke incidences. It is characterized by brain cell death in a region where cerebral arteries supplying blood are occluded. Under these ischemic conditions, apoptosis is responsible for the cell death, at least in part. Goat's-beard (Aruncus dioicus var. kamtschaticus) is a perennial plant that grows naturally in the alpine regions of Korea. In the present study, we first determined whether water extract of goat's-beard (HY1646) and some of its fractions prepared by partitioning with organic solvents could improve the viability of human hepatocellular carcinoma cells (HepG2) cultured under hypoxic condition by blocking apoptotic pathways. Based on the in vitro findings, we subsequently investigated whether HY1646 and the ethyl acetate fraction (EA) selected from cell culture-based screening could attenuate brain injury in a rat middle cerebral artery occlusion (MCAO) model of ischemia (2 hr), followed by 22 hours of reperfusion. The cell number was sustained close to that initially plated in the presence of HY1646 even after 24 hr of cell culture under hypoxic condition (3% $O_2$), at which time the cell number reached almost zero in the absence of HY1646. This improvement in cell viability was attributed to the delay in apoptosis, identified by the formation of DNA ladder in gel electrophoresis. Of fractions soluble in hexane, ethyl acetate (EA) and butanol, EA was chosen for the animal experiments because EA demonstrated the best cell viability at the lowest concentration (10 ${\mu}g$/mL). HY1646 (200 mg/kg) and EA (10 and 20 mg/kg) significantly reduced infarct size, an index of brain injury, by 16.6, 40.0 and 61.0%, respectively, as assessed by 2,3,5-triphenyl tetrazolium chloride staining. The findings suggest that prophylactic intake of goat's beard might be beneficial for preventing ischemic stroke.

Depiction of Acute Stroke Using 3-Tesla Clinical Amide Proton Transfer Imaging: Saturation Time Optimization Using an in vivo Rat Stroke Model, and a Preliminary Study in Human

  • Park, Ji Eun;Kim, Ho Sung;Jung, Seung Chai;Keupp, Jochen;Jeong, Ha-Kyu;Kim, Sang Joon
    • Investigative Magnetic Resonance Imaging
    • /
    • v.21 no.2
    • /
    • pp.65-70
    • /
    • 2017
  • Purpose: To optimize the saturation time and maximizing the pH-weighted difference between the normal and ischemic brain regions, on 3-tesla amide proton transfer (APT) imaging using an in vivo rat model. Materials and Methods: Three male Wistar rats underwent middle cerebral artery occlusion, and were examined in a 3-tesla magnetic resonance imaging (MRI) scanner. APT imaging acquisition was performed with 3-dimensional turbo spin-echo imaging, using a 32-channel head coil and 2-channel parallel radiofrequency transmission. An off-resonance radiofrequency pulse was applied with a Sinc-Gauss pulse at a $B_{1,rms}$ amplitude of $1.2{\mu}T$ using a 2-channel parallel transmission. Saturation times of 3, 4, or 5 s were tested. The APT effect was quantified using the magnetization-transfer-ratio asymmetry at 3.5 ppm with respect to the water resonance (APT-weighted signal), and compared with the normal and ischemic regions. The result was then applied to an acute stroke patient to evaluate feasibility. Results: Visual detection of ischemic regions was achieved with the 3-, 4-, and 5-s protocols. Among the different saturation times at $1.2{\mu}T$ power, 4 s showed the maximum difference between the ischemic and normal regions (-0.95%, P = 0.029). The APTw signal difference for 3 and 5 s was -0.9% and -0.7%, respectively. The 4-s saturation time protocol also successfully depicted the pH-weighted differences in an acute stroke patient. Conclusion: For 3-tesla turbo spin-echo APT imaging, the maximal pH-weighted difference achieved when using the $1.2{\mu}T$ power, was with the 4 s saturation time. This protocol will be helpful to depict pH-weighted difference in stroke patients in clinical settings.

Changes in Gene Expression in the Rat Hippocampus after Focal Cerebral Ischemia

  • Chung, Jun-Young;Yi, Jae-Woo;Kim, Sung-Min;Lim, Young-Jin;Chung, Joo-Ho;Jo, Dae-Jean
    • Journal of Korean Neurosurgical Society
    • /
    • v.50 no.3
    • /
    • pp.173-178
    • /
    • 2011
  • Objective : The rat middle cerebral artery thread-occlusion model has been widely used to investigate the pathophysiological mechanisms of stroke and to develop therapeutic treatment. This study was conducted to analyze energy metabolism, apoptotic signal pathways, and genetic changes in the hippocampus of the ischemic rat brain. Methods : Focal transient cerebral ischemia was induced by obstructing the middle cerebral artery for two hours. After 24 hours, the induction of ischemia was confirmed by the measurement of infarct size using 2,3,5-triphenyltetrazolium chloride staining. A cDNA microarray assay was performed after isolating the hippocampus, and was used to examine changes in genetic expression patterns. Results : According to the cDNA microarray analysis, a total of 1,882 and 2,237 genes showed more than a 2-fold increase and more than a 2-fold decrease, respectively. When the genes were classified according to signal pathways, genes related with oxidative phosphorylation were found most frequently. There are several apoptotic genes that are known to be expressed during ischemic brain damage, including Akt2 and Tnfrsf1a. In this study, the expression of these genes was observed to increase by more than 2-fold. As energy metabolism related genes grew, ischemic brain damage was affected, and the expression of important genes related to apoptosis was increased/decreased.Conclusion : Our analysis revealed a significant change in the expression of energy metabolism related genes (Atp6v0d1, Atp5g2, etc.) in the hippocampus of the ischemic rat brain. Based on this data, we feel these genes have the potential to be target genes used for the development of therapeutic agents for ischemic stroke.

Cerebral Blood Flow Monitoring by Diffuse Speckle Contrast Analysis during MCAO Surgery in the Rat

  • Yeo, Chaebeom;Kim, Heejaung;Song, Cheol
    • Current Optics and Photonics
    • /
    • v.1 no.5
    • /
    • pp.433-439
    • /
    • 2017
  • The rodent model has been used frequently to understand stroke pathophysiology, due to its low cost and the large spectrum of genetic strains available. Here, we present a diffuse speckle contrast analysis system (DSCA) with a $1{\times}2$ optical switch that was used to non-invasively assess cerebral blood flow (CBF) changes in the rat during intraluminal suturing for middle cerebral artery occlusion (MCAO) surgery. The blood flow index (BFI) in the left hemisphere was lower than that in the right hemisphere because the left middle cerebral artery was occluded. Furthermore, the performance of the DSCA system was compared with that of commercial laser Doppler flowmetry. The changes in the BFI measured by the two systems were correlated strongly. The DSCA system was less sensitive to motion artifacts and able to measure relatively deep tissue flow in the rat's brain. In conclusion, the DSCA system secured CBF monitoring during surgery in a rodent model without craniotomy.

Stem Cell Tracking in Rat Stroke Model

  • Park, Bo-Hyeong;Lee, Yeong-Ju;Park, Jae-Ae;U, Seung-Tae;Kim, In-Seong;Lee, Jae-Jun;Kim, Ju-Hyeon;Song, Hui-Jin;Jang, Yong-Min
    • Proceedings of the KSMRM Conference
    • /
    • 2005.09a
    • /
    • pp.67-67
    • /
    • 2005
  • PDF

Dehydroevodiamine·HCl enhances cognitive function in memory-impaired rat models

  • Shin, Ki Young;Kim, Ka Young;Suh, Yoo-Hun
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.21 no.1
    • /
    • pp.55-64
    • /
    • 2017
  • Progressive memory impairment such as that associated with depression, stroke, and Alzheimer's disease (AD) can interfere with daily life. In particular, AD, which is a progressive neurodegenerative disorder, prominently features a memory and learning impairment that is related to changes in acetylcholine and abnormal ${\beta}$-amyloid ($A{\beta}$) deposition in the brain. In the present study, we investigated the effects of dehydroevodiamine HCl (DHED) on cognitive improvement and the related mechanism in memory-impaired rat models, namely, a scopolamine-induced amnesia model and a $A{\beta}_{1-42}$-infused model. The cognitive effects of DHED were measured using a water maze test and a passive avoidance test in the memory-impaired rat models. The results demonstrate that DHED (10 mg/kg, p.o.) and Donepezil (1 mg/kg, p.o.) ameliorated the spatial memory impairment in the scopolamine-induced amnestic rats. Moreover, DHED significantly improved learning and memory in the $A{\beta}_{1-42}$-infused rat model. Furthermore, the mechanism of these behavioral effects of DHED was investigated using a cell viability assay, reactive oxygen species (ROS) measurement, and intracellular calcium measurement in primary cortical neurons. DHED reduced neurotoxicity and the production of $A{\beta}$-induced ROS in primary cortical neurons. In addition, similar to the effect of MK801, DHED decreased intracellular calcium levels in primary cortical neurons. Our results suggest that DHED has strong protective effects against cognitive impairments through its antioxidant activity and inhibition of neurotoxicity and intracellular calcium. Thus, DHED may be an important therapeutic agent for memory-impaired symptoms.

Attenuated Cerebral Ischemic Injury by Polyethylene Glycol-Conjugated Hemoglobin

  • Cho, Geum-Sil;Choi, In-Young;Choi, Yoo-Keum;Kim, Seul-Ki;Cai, Ying;Nho, Kwang;Lee, Jae-Chul
    • Biomolecules & Therapeutics
    • /
    • v.17 no.3
    • /
    • pp.270-275
    • /
    • 2009
  • Polyethylene glycol-conjugated hemoglobin (PEG-Hb) has been proposed as a blood substitute for transfusion due to their plasma expansion and oxygen transport capabilities. The protective effect of PEG-Hb on cerebral hypoxic-ischemic injury was investigated in neonatal hypoxia model and adult rat focal cerebral ischemia model. As intravenously administered 30 min before the onset of hypoxia, PEG-Hb markedly protected cerebral hypoxic injury in a neonatal rat hypoxia model. A similar treatment of PEG-Hb largely reduced the ischemic injury ensuing after 2-h middle cerebral artery occlusion followed by 22-h reperfusion. Consistently, neurological disorder was significantly improved by PEG-Hb. The results indicate that the pharmacological blockade of cerebral ischemic injury by using PEG-Hb may provide a useful strategy for the treatment of cerebral stroke.

Methanol Extract of Cassia mimosoides var. nomame and Its Ethyl Acetate Fraction Attenuate Brain Damage by Inhibition of Apoptosis in a Rat Model of Ischemia-Reperfusion

  • Kim, Ki-Hong;Lee, Jong-Won
    • Preventive Nutrition and Food Science
    • /
    • v.15 no.4
    • /
    • pp.255-261
    • /
    • 2010
  • Ischemic stroke, a major cause of death and disability worldwide, is caused by occlusion of cerebral arteries that, coupled with or without reperfusion, results in prolonged ischemia (hypoxia and hypoglycemia) and, ultimately, brain damage. In this study, we examined whether methanol extract of the whole plant of Cassia mimosoides var. nomame Makino that grows naturally in Korea, as well as Japan and China, and some of its fractions obtained by partitioning with organic solvents could protect human hepatocellular carcinoma cells (HepG2) under hypoxic condition by inhibiting apoptosis. We also investigated if these extracts could attenuate brain damage in a rat model of 2 hr of ischemia, generated by middle cerebral artery occlusion, and 22 hr of reperfusion. The whole extract ($100{\mu}g$/mL) maintained the cell number at more than half of that initially plated, even after 24 hr of cell culture under hypoxic condition (3% $O_2$). In the absence of the whole extract, almost all of the cells were dead by this time point. This improvement of cell viability came from a delay of apoptosis, which was confirmed by observing the timing of the formation of a DNA ladder when assessed by gel electrophoresis. Of fractions soluble in hexane, ethyl acetate (EA), butanol and water, EA extracts were selected for the animal experiments, as they improved cell viability at the lowest concentration ($10{\mu}g$/mL). The whole extract (200 mg/kg) and EA extract (10 and 20 mg/kg) significantly reduced infarct size, a measure of brain damage, by 34.7, 33.8 and 45.2.0%, respectively, when assessed by 2,3,5-triphenyl tetrazolium chloride staining. The results suggest that intake of Cassia mimosoides var. nomame Makino might be beneficial for preventing ischemic stroke through inhibition of brain cell apoptosis.

Kami-bang-pung-tong-sung-san is Involved in Regulating Physiological Parameters Associated with Hypertension in Spontaneously Hypertensive Rat

  • Na Young Cheul;Nam Gung Uk;Lee Yang Koo;Kim Dong Hee
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.18 no.1
    • /
    • pp.243-249
    • /
    • 2004
  • KBPT is the fortified prescription of Bang-pung-tong-sung-san(BPTS) by adding Spatholobi Clulis and Salviae Miltiorrzae Radix. BPTS prescription has been utilized in oriental medicine for the treatments of vascular diseases including hypertension, stroke, and arteriosclerosis. Yet, the overall mechanism underlying its activity at the cellular levels remains unknown. Using spontaneously hypertensive rat (SHR) model, we investigated whether the KBPTS has an effect on the pathophysiological parameters related to hypertension. Pretreatment of SHR with KBPTS was found to lower blood pressure and heartbeat rate. Levels of aldosterone. dopamine, and epinephrine were found to be significantly reduced in the serum of KBPTS-treated SHR. Histological examination of adrenal cortex and superior aorta showed that tissues from KBPTS-treated SHR rats were more intact and cleaner compared to saline-treated control. Levels of superoxide dismutase (SOD) protein in adrenal gland, aorta, myocardial tissue, and kidneys were higher in KBPTS-treated animals than control group. The present data suggest that KBPTS may play a role in normalizing cardiovascular function in SHR by controlling hypertension-related blood factors and superoxide stressors.