• 제목/요약/키워드: Rat osteoblastic cell

검색결과 29건 처리시간 0.019초

단치소요산가미방이 Dexamethasone 처리한 랫드의 두개골 세포에 미치는 영향 (Effects of DSG on Osteoblastic Cell from Rat Calvariae in the Presence of Dexamethasone)

  • 박종형;황귀서
    • 대한예방한의학회지
    • /
    • 제10권2호
    • /
    • pp.19-30
    • /
    • 2006
  • It is well known that glucocorticoid may induce osteoporosis as its side effect in long-term therapy. The inhibition of osteoblast by glucocorticoid is also recognized as its action mechanism of decreased bone formation. In this study, the effect of DSG, Danchisoyosangamibang, on the differentiation and function of osteoblastic cells was investigated. The osteoblastic cells were isolated from rat calvariae using collagenase treatment. The cell counting, enzyme activity assay, MTT assay, collagen content assay were done to determine the cell proliferation, intracellular alkaline phosphatase (ALP) activity, bone martrix production, and cell apoptosis. DSG enhanced the cell proliferation after the culture for 10 days. ALP activity and total protein synthesis, and intracelluar collagen synthesis were increased time dependently when the cells were treated with DSG in the presence of dexamethasone. And, DSG restored calvarial cell function decreased by dexamethasone.

  • PDF

불화나트륨이 조골세포의 생리적 활성에 미치는 영향 (THE EFFECT OF SODIUM FLUORIDE ON THE PHYSIOLOGICAL ROLE OF OSTEOBLASTIC CELL)

  • 김대업
    • 대한소아치과학회지
    • /
    • 제25권3호
    • /
    • pp.635-648
    • /
    • 1998
  • The clinical use of fluoride with a well known osteogenic action in osteoporotic patients is rational, because this condition is characterized by impaired bone formation. However, its anabolic effect has not been demonstrated well in vitro. The purpose of this study was to investigate the effects of sodium fluoride on the physiological role of osteoblastic cell. Osteoblastic cells were isolated from fetal rat calvaria. The results were as follows : 1. Mineralized nodules were shown in osteoblastic cell cultures, which had been maintained in the presence of ascorbic acid and ${\beta}-glycerophosphate$ up to 21 days. When cultures were treated with pulses of 48 hr duration before apparent mineralization was occurring, 2-fold increased in their number was detected. 2. Alkaline phosphatase activity of osteoblastic cells was inhibited by sodium fluoride in dose dependent manner. 3. The effect of sodium fluoride on the osteoblastic cell proliferation was measured by the incorporation of $[^3H]$-thymidine into DNA. As a result, sodium fluoride at $1{\sim}100{\mu}M$ increased the $[^3H]$-thymidine incorporation into DNA in a dose dependent manner. 4. The signaling mechanism activated by sodium fluoride dose-dependently enhanced the tyrosine phosphorylation of the adaptor molecule $Shc^{p66}$ and their association with Grb2, one of earlier events in a MAP kinase activation pathway cascade used by a significant subset of G protein-coupled receptors. 5. The phosphorylation of CREB(cAMP response element binding protein)was inhibited by the sodium fluoride in MC3T3E1 cells. In conclusion, the results of this study suggested that the mitogenic effect of the sodium fluoride in MC3T3E1 cell was stimulated in a dose-dependent manner and suggested "an important role for the interaction between She and Grb2" in controlling the proliferation of osteoblasts.

  • PDF

자혈양근탕(滋血養筋湯)이 부신피질호르몬에 의해 억제된 조골세포 기능에 미치는 영향 (Effects of JY on Osteoblastic Cell from Rat Calvariae in the Presence of Glucocorticoid)

  • 최정신;황귀서
    • 대한예방한의학회지
    • /
    • 제12권2호
    • /
    • pp.197-206
    • /
    • 2008
  • The inhibition of osteoblast by glucocorticoid is recognized as its action mechanism of decreased bone formation. In this study, the effect of JY, Jahyulyangkeuntang, on the differentiation and mineralization of osteoblastic cells was investigated in the presence of dexamethasone. The cell counting, enzyme activity assay, MTT assay, collagen content assay were done to determine the cell proliferation, alkaline phosphatase(ALP) activity, bone martrix production, and cell apoptosis. JY enhanced the cell proliferation after the culture for 10 days. ALP activity and total protein synthesis, and intracellular collagen synthesis were increased when the cells were treated with JY. And JY restored calvarial cell function decreased by dexamethasone.

  • PDF

양극화 타이타늄 표면처리가 골모세포 증식에 미치는 영향 (The effect of implant surface treated by anodizing on proliferation of the rat osteoblast)

  • 허인식;박준봉;권영혁;허익;김형선;조병원;조원일
    • Journal of Periodontal and Implant Science
    • /
    • 제33권3호
    • /
    • pp.499-518
    • /
    • 2003
  • The surface characteristics of titanium have been shown to have an important role in contact ossseointegration around the implant. Anodizing at high voltage produces microporous structure and increases thickness of surface titanium dioxide layer. The aim of present study was to analyse the response of rat calvarial osteoblast cell to commercially pure titanium and Ti-6A1-4V anodized in 0.06 mol/l ${\beta}$-glycerophosphate and 0.03 mol/l sodium acetate. In this study, rat calvarial osteoblasts were used to assay for cell viability and cell proliferation on the implant surface at 1,2,4,7 days. 1. Surface roughness was 1.256${\mu}m$ at 200V, and 1.745${\mu}m$ at 300V. 2. The thickness of titanium oxide layer was increased 1 ${\mu}m$ with the increase of 50V. 3. The proliferation rate of osteoblastic cells was increased with the increase of the surface roughness and the thickness of titanium oxide layer. 4. There was no difference in cell viability and cell proliferation between commercially pure titanium and Ti-6A1-4V anodized at the same condition. In conclusion, the titanium surface modified by anodizing was biocompatible, produced enhanced osteoblastic response. The reasons of enhanced osteoblast response might be due to reduced metal ion release by thickened and stabilized titanium dioxide layer and microporous rough structures.

홍화씨 추출물이 조골모유사세포활성 및 골재생에 미치는 영향 (Effects of Safflower Seed Extract on the Osteoblastic Activity and Bone Regeneration)

  • 윤동환;이승철;김명은;김은철;유형근;김윤철;신형식
    • Journal of Periodontal and Implant Science
    • /
    • 제28권4호
    • /
    • pp.769-786
    • /
    • 1998
  • The purpose of the present study is to examine the effect of cell proliferation and alkaline phosphatase activity in osteoblastic cells and to compare the bone healing ability of rat calvarial defects between the control group and the safflower seed extract treated group. Osteoblastic cells were obtained from calvariae of a fetal rat. Cells were cultured containing DMEM and safflower seed extract ($10^{-6}g/ml$, $10^{-3}g/ml$) at $37^{\circ}$ with 5% $CO_2$ in 100% humidity for 3 days. MTT was performed to examine the viability of the cells, and alkaline phosphatase activity was analyzed to examine the mineralization in vitro. Rat calvarial defects($5{\times}5mm$) in 250g Sprague-Dawly were made using round bur. Rats were administrated with safflower seed extract(0.35g/kg/day) for experimental periods. Calvarial defects were studied histopathologically and immunohistochemically at 1,4, and 8 weeks. High concentration group($10^{-3}g/ml$) of safflower seed extract significantly increased in the cell proliferation and alkaline phos phatase synthesis in osteoblastic cells. The infiltration of inflammatory cells and osteoclastic activities were decreased in the safflower seed extract treated group as compared with control group. Bone maturation was accelerated in the safflower seed extract treated group as compared to control group. No difference in osteoinductive process was observed between the control and the safflower seed extract treated group. Immunohistochemical observation revealed that protein expression of TGF-$\beta$and osteonectin during early healing phase in the safflower seed extract treated group was slightly increased as compared to control group. These results indicate that safflower seed extract promotes the healing process in bony defect of rat calvariae, and retains a potential applicability as an adjuvant therapeutic modality for regeneration of periodontal bony defect.

  • PDF

Growth and Osteoblastic Differentiation of Mesenchymal Stem Cells on Silk Scaffolds

  • Cho, Hee-Yeon;Baik, Young-Ae;Jeon, Suyeon;Kwak, Yoon-Hae;Kweon, Hae Yong;Jo, You Young;Lee, Kwang Gill;Park, Young Hwan;Kang, Dongchul
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • 제27권2호
    • /
    • pp.303-311
    • /
    • 2013
  • In this study, we compared the efficiency of osteoblast differentiation media (ODM) containing three distinct reagent combinations in osteoblastic differentiation of human bone marrow-derived mesenchymal stem cells (hBMSCs) in monolayer culture. In addition, we analyzed growth and differentiation of hBMSCs on silk scaffolds and examined the bone-forming activity of a nanofibrous silk scaffold in a tibia diaphysis defect model of a rat hind limb with intramedullary nailing. Although all three ODM increased alkaline phosphatase activity to a comparable extent, the ODM containing bone morphogenetic protein-2 (BMP-2) was found to be significantly less effective in promoting mineral deposition than the others. Growth of hBMSCs on sponge-form silk scaffolds was faster than on nanofibrous ones, while osteoblastic differentiation was apparent in the cells grown on either type of scaffold. By contrast, bone formation was observed only at the edge of the nanofibrous scaffold implanted in the tibia diaphysis defect, suggesting that use of the silk scaffold alone is not sufficient for the reconstitution of the long bone defect. Since silk scaffolds can support cell growth and differentiation in vitro, loading MSCs on scaffolds might be necessary to improve the bone-forming activity of the scaffold in the long bone defect model.

한국 홍삼사포닌이 배양중인 쥐 조골세포의 염기성 인산분해효소 활성도에 미치는 영향 (THE EFFECT OF KOREAN RED GINSENG SAPONIN ON THE ALKALINE PHOSPHATASE ACTIVITY OF RAT OSTEOBLASTIC CELL(ROS17/2.8) IN CULTURE)

  • 정진광;김정근;이재현
    • Journal of Periodontal and Implant Science
    • /
    • 제25권3호
    • /
    • pp.694-702
    • /
    • 1995
  • Using the Korean red ginseng saponin, which is known to world-wide and thd effects of it have been investigated by many reserachers for years. Ginseng saponin, one of the major components of Korea ginseng root, has many various biologic effects, such as cytotoxic effect, tumorcidal activity, protein biosynthesis and membrane modifying effect. The purpose of this study was to evaluate effects of ginseng saponin on the alkaline phosphatase activity of ROS cells in culture. After ROS cells were seeded into a 96-well plate, 96-well plate cultured until confluence was obtained. To evaluate cytotoxic effect of total saponin in cultured ROS cells, the plates were added to each total saponin concentration (0-1mg/ml). After 48hr., cells were counted by stain with 0.2% trypan blue at randomly selected field microscopically. Also, to evaluate alkaline phosphatase(ALP) activity of total saponin in cultured ROS cell, the plate was added to each total saponin concentration (0-1mg/ml) and ALP activity was assayed. To evaluate time-course of ALP activity, $31.25{\mu}g/ml$ of saponin added to 96-well plate. After culture of 6, 12, 24 and 48hr., ALP activity test was performed. To evaluate effect of cycloheximide in ALP activity, 96-well plate was added to saponin and cycloheximide. In control group, the plate was added saponin only. The results were as follows. 1. After the various concentration of total saponin was added in the medium, 500 and $1000{\mu}g/ml$ of total saponin showed cytotoxic effect of ROS(P<0.005). 2. In contrast to control group, 7.6, 15.6, 31.25, 62.5 and $250{\mu}g/ml$ of total saponin increased ALP activity significantly. 3. Otherwise, 500 and $1000{\mu}g/ml$ of total saponin decreased ALP activity significantly(P<0.005). 4. As the time span increases, $31.25{\mu}g/ml$ of total saponin increased ALP activity. 5. Cycloheximide decreased saponin-indueced ALP actitity in ROS(P<0.005). These results suggest that Ginseng total saponin stimulates the ALP activity of rat osteoblastic cells.

  • PDF

Inhibition of $IL-1{\beta}$ and IL-6 in Osteoblast-Like Cell by Isoflavones Extracted from Sophorae fructus

  • Joo, Seong-Soo;Kang, Hee-Cheol;Choi, Min-Won;Choi, Young-Wook;Lee, Do-ik
    • Archives of Pharmacal Research
    • /
    • 제26권12호
    • /
    • pp.1029-1035
    • /
    • 2003
  • Osteoporosis is recognized as one of the major hormonal deficiency diseases, especially in menopausal women and the elderly. When estrogen is reduced in the body, local factors such as IL-1 $\beta$ and IL-6, which are known to be related with bone resorption, are increased and promote osteoclastogenesis, which is responsible for bone resorption. In the present study, we investigated whether glucosidic isoflavones (Isocal, PIII) extracted from Sophorae fructus affect the proliferation of osteoblasts and prevent osteoclastogenesis in vitro by attenuating upstream cytokines such as IL-1$\beta$ and IL-6 in a human osteoblastic cell line (MG-63) and in a primary osteoblastic culture from SD rat femurs. Interestingly, IL-1$\beta$ and IL-6 mRNA were significantly suppressed in osteoblast-like cells treated with 17$\beta$-estradiol (E2) and PIII when compared to positive control (SDB), and this suppression was more effective at $10^{-8}$% than at the highest concentration of $10^{-4}$%. In addition, these were confirmed in protein levels using ELISA assay. In the cell line, the cells showed that E2 was the most effective in osteoblastic proliferation over the whole range of concentration ($10^{-4}%-10^{-12}$%), even though PIII also showed the second greatest effectiveness at $10^{-8}$%. Nitric oxide (NO) was significantly (p<0.05) upregulated in PIII and E2 over the concentration range $10^{-6}% to 10^{-8}$% when compared to SDB, without showing any dose dependency. In bone marrow primary culture, we found by TRAP assay that PIII effectively suppressed osteoclastogenesis next to E2 in comparison with SDB and culture media (control). In conclusion, these results suggest that local bone-resorbing cytokines can be regulated by PIII at lower concentrations and that, therefore, PIII may preferentially induce anti-osteoporosis response by attenuating osteoclastic differentiation and by upregulating NO.

치주인대세포와 치은섬유아세포의 분화에 미치는 rhBMP-2의 효과에 대한 연구 (The effect of rhBMP-2 on the osteoblastic differentiation of human periodontal ligament cells and gingival fibroblasts in vitro)

  • 김현종;최상묵;구영;류인철;정종평;한수부;이용무
    • Journal of Periodontal and Implant Science
    • /
    • 제32권2호
    • /
    • pp.389-402
    • /
    • 2002
  • BMP can induce ectopic bone formation when implanted into sites such as rat muscle and can greatly enhance healing of bony defects when applied exogenously. In addition, BMP stimulated osteoblastic differentiation in vitro in various types of cells. The aim of this study was to investigate the effect of recombinant human bone morphogenetic protein(rhBMP-2) on the proliferation and osteoblastic differentiation of human periodontal ligament cells and gingival fibroblasts. The cell number and alkaline phosphatase activity were measured in 3 experimental groups of human periodontal ligament cells and gingival fibroblasts (control group, rhBMP-2 50ng/ml group, and rhBMP-2 100ng/ml group) at 1 and 2 weeks after culture. At the same time, total RNA of cultured cells were extracted and reverse trascription polymerase chain reaction(RT-PCR) was performed to determine the expression of mRNA of bone matrix protein. RhBMP-2 had no effect on the cell proliferation of human periodontal ligament cells and gingival fibroblasts. Alkaline phosphatase activity was elevated significantly by rhBMP-2 in both cells. And periodontal ligament cells showed significantly higher alkaline phosphatase activity than gingival fibroblasts. ${\beta}$-actin, type I collagen, alkaline phosphatase, BMP-2 mRNA were expressed in all of the samples. Osteopontin, osteocalcin mRNA were expressed in all periodontal ligament cell groups, and rhBMP-2 50ng/ml group, rhBMP-2 100ng/ml group of 2 week culture period of gingival fibroblasts. Bone sialoprotein mRNA was only expressed in rhBMP-2 50ng/ml group and rhBMP-2 100ng/ml group of 2-week culture period. These results suggest that rhBMP-2 stimulates osteoblastic differentiation in human periodontal ligament cells and gingival fibroblasts in vitro.

골형성유도단백질의 첨가가 ${\Delta}^{12}-PGJ_2$가 유도하는 석회화에 미치는 영향 (The effect of rhBMP-2 on ${\Delta}^{12}-PGJ_2$ induced osteoblastic differentiation and mineralization)

  • 김원경;김경화;김종진;이영규;구영
    • Journal of Periodontal and Implant Science
    • /
    • 제35권2호
    • /
    • pp.345-357
    • /
    • 2005
  • Prostaglandin plays a significant role in the local control of bone metabolism associated with periodontal disease. ${\Delta}^{12}-PGJ_2$ is a natural $PGD_2$ metabolite that is formed in vivo in the presence of plasma. It is known for ${\Delta}^{12}-PGJ_2$ to stimulate calcification in osteoblastic cells. Bone morphogenetic protein(BMP) stimulated osteoblastic differentiation in various types of cells and greatly enhanced healing of bony defects. The purpose of this study was to evaluate the effect of rhEMP-2 on ${\Delta}^{12}-PGJ_2$ induced osteoblastic differentiation and mineralization in vitro. A human osteosarcoma cells line Saos-2 were cultured. In the test groups, 10-7M of ${\Delta}^{12}-PGJ_2$ or mixture of 10-8M of ${\Delta}^{12}-PGJ_2$ and 100ng/ml of rhBMP-2 or 100ng/ml of rhEMP-2 were added to culture media. After 1 day, 2 days and 4 days of culture period, the cell number was measured. Alkaline phosphatase activity was measure at 3 days. Reverse transcription polymerase chain reaction(RT-PCR) was performed to determine the expression of mRNA of bone matrix protein at 8 hours, 1 day and 7 days. The ability to produce mineralized nodules in rat osteoblasts(MC3T3-E1) was evaluated at 21 days. The results were as follows : 1. rhEMP-2 or mixture of rhBMP-2 and ${\Delta}^{12}-PGJ_2$ inhibited cell proliferation of human osteosarcoma cells. 2. rhEMP-2 or mixture of rhBMP-2 and ${\Delta}^{12}-PGJ_2$ stimulated alkaline phosphatase activity significantly higher than ${\Delta}^{12}-PGJ_2$ alone. 3. rhBMP-2 or mixture of rhEMP-2 and ${\Delta}^{12}-PGJ_2$ stimulated mineralization compared to ${\Delta}^{12}-PGJ_2$ alone. 4. mRNA of alkaline phosphatase, BMP-2, cbfa 1, Type I collagen were detected in the group treated with ${\Delta}^{12}-PGJ_2$/rhBMP-2, rhBMP-2 alone, ${\Delta}^{12}-PGJ_2$ alone. These results show that mixture of ${\Delta}^{12}-PGJ_2$ and rhBMP-2 causes more bone formation than ${\Delta}^{12}-PGJ_2$ alone while the bone formation effects of mixture of ${\Delta}^{12}-PGJ_2$ and rhBMP-2 are less than those of rhBMP-2 alone. Further researches would be necessary to clarify the interactions of these agents.