• Title/Summary/Keyword: Rat cardiac myocytes

Search Result 31, Processing Time 0.022 seconds

Depression of L-type $Ca^{2+}$ and Transient Outward $K^+$ Currents in Endotoxin-treated Rat Cardiac

  • Park, Kyu-Sang;Lee, Boo-Soo;Kong, In-Deok;Lee, Joong-Woo
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.3 no.6
    • /
    • pp.623-630
    • /
    • 1999
  • Decreased cardiac contractility occurs in endotoxicosis, but little is known about the ionic mechanism responsible for myocardial dysfunction. In this study, we examined the changes in $Ca{2+}$ and $K^+$ currents in cardiac myocytes from endotoxin-treated rat. Ventricular myocytes were isolated from normal and endotoxemic rats (ex vivo), that were treated for 10 hours with Salmonella enteritidis lipopolysaccharides (LPS; 1.5 mg/kg) intravenously. Normal cardiac myocytes were also incubated for 6 hours with 200 ng/ml LPS (in vitro). L-type $Ca{2+}$ current $(I_{Ca,L})$ and transient outward $K^+$ current $(I_{to})$ were measured using whole cell patch clamp techniques. Peak $I_{Ca,L}$ was reduced in endotoxemic myocytes (ex vivo; 6.00.4 pA/pF, P<0.01) compared to normal myocytes (control; 10.90.6 pA/pF). Exposure to endotoxin in vitro also attenuated $I_{Ca,L}$ (8.40.4 pA/pF, P<0.01). The amplitude of $(I_{to})$ on depolarization to 60 mV was reduced in endotoxin treated myocytes (16.51.5 pA/pF, P<0.01, ex vivo; 20.00.9 pA/pF, P<0.01 , in vitro) compared to normal myocytes (control; 24.71.0 pA/pF). There was no voltage shift in steady-state inactivation of $I_{Ca,L}$ and $(I_{to})$ between groups. These results suggest that endotoxin reduces $Ca{2+}$ and $K^+$ currents of rat cardiac myocytes, which may lead to cardiac dysfunction.

  • PDF

$[^3H]$ Ouabain Binding and Effect of Ouabain on $^{45}Ca^{2+}$-Uptake in Rat Cardiac Myocytes (쥐 심근 세포의 $[^3H]$ Ouabain 결합과 $^{45}Ca^{2+}}$섭취에 미치는 Ouabain의 영향)

  • 이신웅;김영희;진갑덕
    • YAKHAK HOEJI
    • /
    • v.28 no.3
    • /
    • pp.129-138
    • /
    • 1984
  • Specific [$^{3}H$] ouabain binding and $Ca^{2+}$ -uptake were measured to elucidate the role of high affinity [$^{3}H$] ouabain binding site in rat cardiac myocytes which contain 65% of rod cells. High affinity [$^{3}$H] ouabain binding site, which is about 3% of total pump sites, with apparent dissociation constant ($K_{D}$) of $1.1{\times}10^{-7}M$ and maximum binding site concentration (Bmax) of 1.2 pmol/mg protein ($1.754{\times}10^{5}cells$) were identified. At the concentration of $10^{-7}M$ to $10^{-4}M$, ouabain produced concentration dependent increase in $Ca^{2+}$-uptake of myocytes. The effect of ouabain on $Ca^{2+}$-uptake was not effected by membrane depolarization (elevated K+ in incubation medium) or verapamil. These results suggest that in rat ventricular myocytes the ouabain receptor complex to high affinity site may increase Na+ - $Ca^{2+}$ exchange across the sarcolemmal membrane by inhibition of Na+, K+ - ATPase.

  • PDF

The NADPH oxidase inhibitor diphenyleneiodonium suppresses Ca2+ signaling and contraction in rat cardiac myocytes

  • Qui Anh Le;Tran Nguyet Trinh;Phuong Kim Luong;Vu Thi Van Anh;Ha Nam Tran;Joon-Chul Kim;Sun-Hee Woo
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.28 no.4
    • /
    • pp.335-344
    • /
    • 2024
  • Diphenyleneiodonium (DPI) has been widely used as an inhibitor of NADPH oxidase (Nox) to discover its function in cardiac myocytes under various stimuli. However, the effects of DPI itself on Ca2+ signaling and contraction in cardiac myocytes under control conditions have not been understood. We investigated the effects of DPI on contraction and Ca2+ signaling and their underlying mechanisms using video edge detection, confocal imaging, and whole-cell patch clamp technique in isolated rat cardiac myocytes. Application of DPI suppressed cell shortenings in a concentration-dependent manner (IC50 of ≅0.17 µM) with a maximal inhibition of ~70% at ~100 µM. DPI decreased the magnitude of Ca2+ transient and sarcoplasmic reticulum Ca2+ content by 20%-30% at 3 µM that is usually used to remove the Nox activity, with no effect on fractional release. There was no significant change in the half-decay time of Ca2+ transients by DPI. The L-type Ca2+ current (ICa) was decreased concentration-dependently by DPI (IC50 of ≅40.3 µM) with ≅13.1%-inhibition at 3 µM. The frequency of Ca2+ sparks was reduced by 3 µM DPI (by ~25%), which was resistant to a brief removal of external Ca2+ and Na+. Mitochondrial superoxide level was reduced by DPI at 3-100 µM. Our data suggest that DPI may suppress L-type Ca2+ channel and RyR, thereby attenuating Ca2+-induced Ca2+ release and contractility in cardiac myocytes, and that such DPI effects may be related to mitochondrial metabolic suppression.

Long Noncoding RNA MHRT Protects Cardiomyocytes against H2O2-Induced Apoptosis

  • Zhang, Jianying;Gao, Caihua;Meng, Meijuan;Tang, Hongxia
    • Biomolecules & Therapeutics
    • /
    • v.24 no.1
    • /
    • pp.19-24
    • /
    • 2016
  • Acute myocardial infarction (AMI) remains a leading cause of morbidity and mortality worldwide. The exploration of new biomarkers with high sensitivity and specificity for early diagnosis of AMI therefore becomes one of the primary task. In the current study, we aim to detect whether there is any heart specific long noncoding RNA (lncRNA) releasing into the circulation during AMI, and explore its function in the neonatal rat cardiac myocytes injury induced by $H_2O_2$. Our results revealed that the cardiac-specific lncRNA MHRT (Myosin Heavy Chain Associated RNA Transcripts) was significantly elevated in the blood from AMI patients compared with the healthy control ($^*p<0.05$). Using an in vitro neonatal rat cardiac myocytes injury model, we demonstrated that lncRNA MHRT was upregulated in the cardiac myocytes after treatment with hydrogen peroxide ($H_2O_2$) via real-time RT-PCR (qRT-PCR). Furthermore, we knockdowned the MHRT gene by siRNA to confirm its roles in the $H_2O_2$-induced cardiac cell apoptosis, and found that knockdown of MHRT led to significant more apoptotic cells than the non-target control ($^{**}p<0.01$), indicating that the lncRNA MHRT is a protective factor for cardiomyocyte and the plasma concentration of MHRT may serve as a biomarker for myocardial infarction diagnosis in humans AMI.

Effect of Prostaglandins $D_2,\;E_2\;and\;I_2\;on\;the\;Regulation\;of\;K_{ATP}$ Channel Activity in Rat Cardiac Myocytes

  • Ju, Jeong-Min;Nah, Seung-Yeol;Kim, Jae-Ha
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.3 no.5
    • /
    • pp.507-512
    • /
    • 1999
  • Contribution of prostaglandins $D_2,\;E_2\;and\;I_2\;(PGD_2,\;PGE_2\;and\;PGI_2)$ on the regulation of ATP-sensitive $K^+$ channel $(K_{ATP}\;channel)$ was investigated in isolated single rat ventricular cardiac myocytes using the patch clamp technique. $PGD_2,\;PGE_2\;and\; PGI_2$ did not affect $K_{ATP}$ channel activity in the inside-out patch, but increased channel activity in a dose-dependent manner when the channel activities were attenuated by the administration of 100 ${\mu}M$ ATP to the internal solution in the inside-out patch. Channel activations by the prostaglandins were abolished by 50 ${\mu}M$ glibenclamide, a $K_{ATP}$ channel blocker. Dose-response curves of relative channel activity against the ATP concentrations of internal solution in the inside-out patch were shifted to the right in the presence of those three prostaglandins. The rank order of the channel stimulatory potencies $(as\;IC_{50}\;for\;ATP)$ calculated from the dose-response curves were $PGI_2\;>\;PGD_2\;>\;PGE_2.$ Conductance of the channel was not changed by those three prostaglandins. In conclusion, we suggest that prostaglandins $D_2,\;E_2\;and\;I_2$ are involved in the regulation of $K_{ATP}$ channel activity in certain circumstances, and that those three prostaglandins may cause myocardial relaxation by opening $K_{ATP}$ channels, thus protecting the heart from ischema.

  • PDF

Effect of Fluid Pressure on L-type $Ca^{2+}$ Current in Rat Ventricular Myocytes (백서 심실 근세포 L형 $Ca^{2+}$ 전류에 대한 유체압력의 효과)

  • Lee Sun-Woo;Woo Sun-Hee
    • YAKHAK HOEJI
    • /
    • v.50 no.2
    • /
    • pp.111-117
    • /
    • 2006
  • Cardiac chambers serve as mechanosensory systems during the haemodynamic or mechanical disturbances. To examine a possible role of fluid pressure (FP) in the regulatien of atrial $Ca^{2+}$ signaling we investigated the effect of FP on L-type $Ca^{2+}$ current $(I_{Ca})$ in rat ventricular myocytes using whole-cell patch-clamp technique. FP $(\sim40cm\;H_2O)$ was applied to whole area of single myocytes with electronically controlled micro-jet system. FP suppressed the magnitude of peak $I_{Ca}$ by $\cong25\%$ at 0 mV without changing voltage dependence of the current-voltage relationship. FP significantly accelerated slow component in inactivation of $I_{Ca}$, but not its fast component. Analysis of steady-state inactivation curve revealed a reduction of the number of $Ca^{2+}$ channels available for activity in the presence of FP. Dialysis of myocytes with high concentration of immobile $Ca^{2+}$ buffer partially attenuated the FP-induced suppression of $I_{Ca}$. In addition, the intracellular $Ca^{2+}$ buttering abolished the FP-induced acceleration of slow component in $I_{Ca}$ inactivation. These results indicate that FP sup-presses $Ca^{2+}$ currents, in part, by increasing cytosolic $Ca^{2+}$ concentration.

Decrease of Intracellular pH and Activation of $Na^+-H^+$ Exchanger by Fluid Pressure in Rat Ventricular Myocytes (유체 압력에 의한 흰쥐 심실근세포 pH의 감소 및 $Na^+-H^+$ 교환체의 활성화)

  • Kim, Joon-Chul;Woo, Sun-Hee
    • YAKHAK HOEJI
    • /
    • v.55 no.3
    • /
    • pp.247-250
    • /
    • 2011
  • An increase in ventricular pressure can alter cardiac excitation and contraction. Recent report has demonstrated that fluid pressure (FP) suppresses L-type $Ca^{2+}$ current with acceleration of the current inactivation in ventricular myocytes. Since the L-type $Ca^{2+}$ channels known to be regulated by intracellular pH ($pH_i$), this study was designed to explore whether pressurized fluid flow affects pHi in isolated rat ventricular myocytes. A flow of pressurized (~16 dyne/$cm^2$) fluid, identical to that bathing the myocytes, was applied onto single myocytes, and intracellular $H^+$ concentration was monitored using confocal $H^+$ imaging. FP significantly decreased $pH_i$ by $0.07{\pm}0.01$ pH units (n=16, P<0.01). Intracellular acidosis enhances the activity of $Na^+-H^+$ exchanger (NHE). Therefore, we examined if the NHE activity is increased by FP using the NHE inhibitor, HOE642. Although HOE642 did not alter $pH_i$ in control conditions, it decreased $pH_i$ in cells pre-exposed to FP, suggesting enhancement of NHE activity by FP. In addition, FP-induced intracellular acidosis was larger in cells pre-treated with HOE642 than in cells under the control conditions. These results suggest that FP induces intracellular acidosis and that NHE may contribute to extrude $H^+$ during the FP-induced acidosis in rat ventricular myocytes.

Endothelin Receptor Overexpression Alters Diastolic Function in Cultured Rat Ventricular Myocytes

  • Kang, Mi-Suk;Walker, Jeffery W.;Chung, Ka-Young
    • Biomolecules & Therapeutics
    • /
    • v.20 no.4
    • /
    • pp.386-392
    • /
    • 2012
  • The endothelin (ET) signaling pathway controls many physiological processes in myocardium and often becomes upregulated in heart diseases. The aim of the present study was to investigate the effects of ET receptor upregulation on the contractile function of adult ventricular myocytes. Primary cultured adult rat ventricular myocytes were used as a model system of ET receptor overexpression in the heart. Endothelin receptor type A ($ET_A$) or type B ($ET_B$) was overexpressed by Adenoviral infection, and the twitch responses of infected ventricular myocytes were measured after ET-1 stimulation. Overexpression of $ET_A$ exaggerated positive inotropic effect (PIE) and diastolic shortening of ET-1, and induced a new twitch response including twitch broadening. On the contrary, overexpression of $ET_B$ increased PIE of ET-1, but did not affect other two twitch responses. Control myocytes expressing endogenous receptors showed a parallel increase in twitch amplitude and systolic $Ca^{2+}$ in response to ET-1. However, intracellular $Ca^{2+}$ did not change in proportion to the changes in contractility in myocytes overexpressing $ET_A$. Overexpression of $ET_A$ enhanced both systolic and diastolic contractility without parallel changes in $Ca^{2+}$. Differential regulation of this nature indicates that upregulation of $ET_A$ may contribute to diastolic myocardial dysfunction by selectively targeting myofilament proteins that regulate resting cell length, twitch duration and responsiveness to prevailing $Ca^{2+}$.

Enhancement of $Ca^{2+}$ Spark Occurrence by Murrayafoline-A in Rat Ventricular Myocytes (Murrayafoline-A에 의한 심실 근육세포 $Ca^{2+}$ 스파크 발생의 증가)

  • Kim, Joon-Chul;Cuong, Nguyen Manh;Woo, Sun-Hee
    • YAKHAK HOEJI
    • /
    • v.58 no.4
    • /
    • pp.245-249
    • /
    • 2014
  • Murrayafoline-A (1-methoxy-3-methylcarbazole) is a monomeric carbazole alkaloid found in Murraya euchrestifolia HAYATA and Glycosmis stenocarpa. We have recently shown that murrayafoline-A has positive inotropic effect in isolated rat ventricular myocytes. To know possible mechanisms for the positive inotropic effect of murrayafoline-A we examined the effects of murrayafoline-A on in situ behavior of cardiac $Ca^{2+}$ release units ('$Ca^{2+}$ sparks') and sarcoplasmic reticulum (SR) $Ca^{2+}$ loading using confocal $Ca^{2+}$ imaging method in single rat ventricular myocytes. Murrayafoline-A significantly increased the frequency (events/($10^3{\mu}m^2{\cdot}s$)) of $Ca^{2+}$ sparks in a concentration-dependent manner, with an $EC_{50}$ of $28{\pm}6.4{\mu}M$ and a maximal ~twofold change. The $Ca^{2+}$ content in the SR, measured as caffeine (10 mM)-induced $Ca^{2+}$ transient, was significantly increased by murrayafoline-A (${\approx}$116% and ${\approx}$123% of control at 25 and 100 ${\mu}M$, respectively). In addition, murrayafoline-A significantly increased the fractional $Ca^{2+}$ release, suggesting increase in the efficacy of $Ca^{2+}$ release at given SR $Ca^{2+}$ loading. These results suggest that murrayafoline-A may enhance contractility via increase in $Ca^{2+}$ release from the SR through the ryanodine receptors in ventricular myocytes.

Stretch-activated $K^+$ Channels in Rat Atrial Myocytes

  • Youm, Jae-Boum
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.7 no.6
    • /
    • pp.341-348
    • /
    • 2003
  • Mechanical stimuli to the cardiac myocytes initiate many biochemical and physiological events. Stretch-activated cation channels have been suggested to mediate these events. In this study, cell-attached and inside-out excised-patch clamp methods were used to identify stretch-activated cation channels in adult rat atrial myocytes. Channel openings were increased in cell-attached configuration when negative pressure was applied to the pipette, and also in inside-out excised patches by negative pressure. The channel was not permeable to $Cl^-$, $Na^+$ and $Cs^+$, but selectively permeable to $K^+$, and the degree of activation was dependent on the magnitude of negative pressure (full activation at ${\sim} -50 mmHg). In symmetrical 140 mM KCl, the slope conductance was $51.2{\pm}3$ pS between the potentials of -80 and 0 mV and $55{\pm}6$ pS between 0 and +80 mV (n=5). Glibenclamide ($100{mu}M$) or ATP (2 mM) failed to block the channel openings, indicating that it is not ATP-sensitive $K^+$ channel. Arachidonic acid ($30{mu}M$), which has been shown to activate a $K^+$ channel cooperatively with membrane stretch, did not affect the channel activity. $GdCl_3$ ($100{mu}M$) also did not alter the activity. These results demonstrate that the mechanical stretch in rat atrial myocytes activates a novel $K^+$-selective cation channel, which is not associated with other $K^+$ channels such as ATP-sensitive and arachidonic acid-activated $K^+$ channel.