• 제목/요약/키워드: Rat adrenal gland

검색결과 88건 처리시간 0.022초

Influence of Glucocorticoids on Cholinergic Stimulation-Induced Catecholamine Secretion from the Rat Adrenal Medulla

  • Lim, Dong-Yoon;Lee, Jae-Joon;Gweon, Oh-Seong
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제2권2호
    • /
    • pp.173-184
    • /
    • 1998
  • The present study was undertaken to examine the influence of glucocorticoids on the secretory responses of catecholamines (CA) evoked by acetylcholine (ACh), DMPP, McN-A-343, excess K^+$ and Bay-K-8644 from the isolated perfused rat adrenal gland and to clarify the mechanism of its action. The perfusion of the synthetic glucocorticoid dexamethasone (10-100\;{\mu}M$) into an adrenal vein for 20 min produced a dose-dependent inhibition in CA secretion evoked by ACh (5.32 mM), excess K^+$ (a membrane-depolarizor 56 mM), DMPP (a selective nicotinic receptor agonist, 100\;{\mu}M$ for 2 min), McN-A-343 (a muscarinic receptor agonist, 100\;{\mu}M$ for 4 min), Bay-K-8644 (a calcium channel activator, 10\;{\mu}M$ for 4 min) and cyclopiazonic acid (a releaser of intracellular $Ca^{2+}$, 10\;{\mu}M$ for 4 min). Similarly, the preperfusion of hydrocortisone (30\;{\mu}M$) for 20 min also attenuated significantly the secretory responses of CA evoked by nicotinic and muscarinic receptor stimulation as well as membrane-depolarization, $Ca^{2+}$ channel activation and the release of intracellular $Ca^{2+}$. Furthermore, even in the presence of betamethasone (30{\mu}M$), CA secretion evoked by ACh, excess K^+$, DMPP and McN-A-343 was also markedly inhibited. Taken together, the present results suggest that glucocorticoids cause the marked inhibition of CA secretion evoked by both cholinergic nicotinic and muscarinic receptor stimulation from the isolated perfused rat adrenal gland, indicating strongly that this inhibitory effect may be mediated by inhibiting influx of extracellular calcium as well as the release of intracellular calcium in the rat adrenomedullary chromaffin cells.

  • PDF

D-Amphetamine Causes Dual Actions on Catecholamine Release from the Rat Adrenal Medulla

  • Lim, Geon-Han;Na, Gwang-Moon;Min, Seon-Young;Seo, Yoo-Seok;Park, Chan-Won;Lim, Dong-Yoon
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제9권1호
    • /
    • pp.45-53
    • /
    • 2005
  • The present study was designed to examine the effect of d-amphetamine on CA release from the isolated perfused model of the rat adrenal gland, and to establish its mechanism of action. Damphetamine $(10{\sim}100{\mu}M$), when perfused into an adrenal vein of the rat adrenal gland for 60 min, enhanced the CA secretory responses evoked by ACh ($5.32{\times}10^{-3}$ M), excess $K^+$ ($5.6{\times}10^{-2}$ M, a membrane depolarizer), DMPP ($10^{-4}$ M, a selective neuronal nicotinic $N_n-receptor$ agonist) and McN-A-343 ($10^{-4}$ M, a selective $M_1-muscarinic$ agonist) only for the first period (4 min), although it alone has weak effect on CA secretion. Moreover, d-amphetamine ($30{\mu}M$) in to an adrenal vein for 60 min also augmented the CA release evoked by BAY-K-8644, an activator of the dihydropyridine L-type $Ca^{2+}$ channels, and cyclopiazonic acid, an inhibitor of cytoplasmic $Ca^{2+}$ ATPase only for the first period (4 min). However, in the presence of high concentration ($500{\mu}M$), d-amphetamine rather inhibited the CA secretory responses evoked by the above all of secretagogues. Collectively, these experimental results suggest that d-amphetamine at low concentrations enhances the CA secretion from the rat adrenal medulla evoked by cholinergic stimulation (both nicotininc and muscarinic receptors) as well as by membrane depolarization, but at high concentration it rather inhibits them. It seems that d-amphetamine has dual effects as both agonist and antagonist at nicotinic receptors of the isolated perfused rat adrenal medulla, which might be dependent on the concentration. It is also thought that these actions of d-amphetamine are probably relevant to the $Ca^{2+}$ mobilization through the dihydropyridine L-type $Ca^{2+}$ cha$N_n$els located on the rat adrenomedullary chromaffin cell membrane and the release of $Ca^{2+}$ from the cytoplasmic store.

흰쥐 적출 부신에서 DMPP 및 McN-A-343의 Catecholamine 분비작용에 관한 연구 (Studies on Secretion of Catecholamines Evoked By DMPP and McN-A-343 in the Rat Adrenal Gland)

  • 임동윤;황두환
    • 대한약리학회지
    • /
    • 제27권1호
    • /
    • pp.53-67
    • /
    • 1991
  • 흰쥐 적출 부신에서 DMPP와 McN-A-343의 카테콜아민(CA) 분비작용의 차이와 특성에 대해서 연구한 결과 다음과 같다. DMPP(100 uM)와 McN-A-343(100 uM)은 부신정맥내로 투여시 유의한 카테콜아민 분비작용을 나타내었다. Mol농도로 비교시 McN-A-343의 CA분비작용은 DMPP의 약 1/5정도였다. DMPP나 McN-A-343의 반복투여시 반응 급강현상은 관찰할 수 없었다. DMPP의 CA분비작용은 chlorisondamine이나 desipramine또는 $Ca^{2+}-free$ Krebs + EGTA 관류등의 전처치로 의의있게 억제되었으나, pirenzepine, ouabain 및 physostigmine등 전처치에 의해서는 영향을 받지 않았다. 그러나 atropine 전처치시 DMPP의 분비작용은 오히려 증강되었다. McN-A-343의 CA분비작용은 atropine, pirenzepine, chloriondamine, physostigmine 및 $Ca^{2+}-free$ medium plus EGTA 관류등의 전처치에 의해서현처히 차단되었으나 desipramine등에 의해서는 영향을 받지 않았다. 그러나 ouabain의 전치치시 McN-A-343의 분비효과는 크게 증강되었다. 이상의 실험결과로 보아 DMPP와 McN-A-343은 횐쥐 적출관류 부신에서 현저한 CA분비작용을 일으키며, 이는 $Ca^{2+}$ 의존성 임을 보였으며, DMPP의 분비작용은 부신의 nicotine 수용체의 흥분을 통해서 나타내며, 또한 McN-A-343의 분비작용은 $M_{1}-muscarine$ 수용체의 흥분에 의하여 유발되는 것을 생각된다. DMPP의 분비활성이 McN-A-343보다 훨씬 강력한 것으로 사료된다.

  • PDF

Mechanism of Vasoactive Intestinal Polypeptide-Induced Catecholamine Secretion from the Rat Adrenal Medulla

  • Lim, Dong-Yoon;Heo, Jae-Bong;Choi, Cheol-Hee;Lim, Geon-Han;Lee, Yong-Gyoon;Oh, Song-Hoon;Kim, Il-Sik;Kim, Jong-In
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제2권4호
    • /
    • pp.443-454
    • /
    • 1998
  • The present study was attempted to investigate the effect of vasoactive intestinal polypeptide (VIP) on secretion of catecholamines (CA) and to establish whether there is the existence of a noncholinergic mechanism in adrenomedullary CA secretion from the isolated perfused rat adrenal gland. The perfusion into an adrenal vein of VIP $(3{\times}10^{-6}\;M)$ for 5 min or the injection of acetylcholine (ACh, $5.32{\times}10^{-3}\;M$) resulted in great increases in CA secretion. Tachyphylaxis to releasing effect of CA evoked by VIP was not observed by the repeated perfusion. The net increase in adrenal CA secretion evoked by VIP still remained unaffected in the presence of atropine or chlorisondamine. However, the CA release in response to ACh was greatly inhibited by the pretreatment with atropine or chlorisondamine. The releasing effects of CA evoked by either VIP or ACh were depressed by pretreatment with nicardipine, TMB-8, and the perfusion of $Ca^{2+}$-free medium. Moreover, VIP- as well as ACh-evoked CA secretory responses were markedly inhibited under the presence of $(Lys^1,\;Pro^{2.5},\;Arg^{3.4},\;Tyr^6)-VIP$ or naloxone. CA secretory responses induced by ACh and high $K^+\;(5.6{\times}10^{-2}\;M)$ were potentiated by infusion of VIP $(3{\times}10^{-6}M\;for\;5\;min)$. Taken together, these experimental results indicate that VIP causes CA release in a fashion of calcium ion -dependence, suggesting strongly that there exists a noncholinergic mechanism that may be involved in the regulation of adrenomedullary CA secretion through VIP receptors in the rat adrenal gland, and that VIP may be the noncholinergic excitatory secretagogue present in the chromaffin cells.

  • PDF

주야 변경이 흰쥐의 체내 질소 보유에 미치는 영향 (Effect of Alteration of Light-Darkness Cycle on Nitrogen Retention in the Rat)

  • 김미경
    • Journal of Nutrition and Health
    • /
    • 제16권4호
    • /
    • pp.273-280
    • /
    • 1983
  • The effect of alteration of light-darkness cycle on the protein metabolism was studied in the rat. The light-darkness cycle was altered either every 3 or 9 days, and animals consumed diets containing 8 or 25% casein. The results were summarized as follows : 1) Food consumptions and body weight gains of the 25% casein groups were higher than those of the 8% casein groups, and, among the animals consumed 25% casein diet, the light-darkness cycle altered group had lower food consumption and body weight gain than the unaltered group. 2) Weights of liver and adrenal gland per l00g body weight were not different with the dietary protein levels, but, at the end of experimental period, the 8% casein diet group of which light-darkness cycle altered every 9 days had the smallest liver weight and the largest adrenal gland weight. 3) Liver nitrogen and plasma protein concentrations of the 25% casein groups were slightly higher than those of the 8% casein groups. 4) Percentages of nitrogen retention of the 25% casein groups at period III were slightly lower in the light-darknerr cycle altered animals than that of the unaltered group.

  • PDF

Effects of Losartan on Catecholamine Release in the Isolated Rat Adrenal Gland

  • Noh, Hae-Jeong;Kang, Yoon-Sung;Lim, Dong-Yoon
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제13권4호
    • /
    • pp.327-335
    • /
    • 2009
  • The aim of this study was to determine whether losartan, an angiotensin II (Ang II) type 1 ($AT_1$) receptor could influence the CA release from the isolated perfused model of the rat adrenal medulla. Losartan (5${\sim}$50 ${\mu}$M) perfused into an adrenal vein for 90 min produced dose- and time-dependent inhibition of the CA secretory responses evoked by ACh (5.32 mM), high $K^+$ (56 mM, a direct membrane depolarizer), DMPP (100 ${\mu}$M) and McN-A-343 (100 ${\mu}$M). Losartan failed to affect basal CA output. Furthermore, in adrenal glands loaded with losartan (15 ${\mu}$M) for 90 min, the CA secretory responses evoked by Bay-K-8644 (10 ${\mu}$M, an activator of L-type $Ca^{2+}$ channels), cyclopiazonic acid (10 ${\mu}$M, an inhibitor of cytoplasmic $Ca^{2+}$ -ATPase), veratridine (100 ${\mu}$M, an activator of $Na^+$ channels), and Ang II (100 nM) were markedly inhibited. However, at high concentrations (150${\sim}$300 ${\mu}$M), losartan rather enhanced the CA secretion evoked by ACh. Collectively, these experimental results suggest that losartan at low concentrations inhibits the CA secretion evoked by cholinergic stimulation (both nicotininc and muscarinic receptors) as well as by membrane depolarization from the rat adrenal medulla, but at high concentration it rather inhibits ACh-evoked CA secretion. It seems that losartan has a dual action, acting as both agonist and antagonist to nicotinic receptors of the rat adrenal medulla, which might be dependent on the concentration. It is also thought that this inhibitory effect of losartan may be mediated by blocking the influx of both $Na^+$ and $Ca^{2+}$ into the rat adrenomedullary chromaffin cells as well as by inhibiting the $Ca^{2+}$ release from the cytoplasmic calcium store, which is thought to be relevant to the $AT_1$ receptor blockade, in addition to its enhancement of the CA release.

Influence of SKF81297 on Catecholamine Release from the Perfused Rat Adrenal Medulla

  • Choi, Deok-Ho;Cha, Jong-Hee;Lim, Dong-Yoon
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제11권5호
    • /
    • pp.197-206
    • /
    • 2007
  • The aim of the present study was to investigate the effects of 6-chloro-7,8-dihydroxy-1-phenyl-2,3,4,5-tetrahydro-1H-3-benzazepine(SKF81297), a selective agonist of dopaminergic $D_1$ receptor, on the secretion of catecholamines(CA) evoked by cholinergic stimulation and membrane-depolarization in the isolated perfused rat adrenal gland, and also to elucidate the mechanism involved. SKF81297($10{\sim}100{\mu}M$) perfused into an adrenal vein for 60 min produced dose- and time-dependent inhibition of CA secretory responses evoked by ACh(5.32 mM), high $K^+$(56 mM), DMPP($100{\mu}M$) and McN-A-343($100{\mu}M$). Also, in adrenal glands loaded with SKF81297($30{\mu}M$), the CA secretory responses evoked by Bay-K-8644($10{\mu}M$), an activator of L-type $Ca^{2+}$ channels and cyclopiazonic acid($10{\mu}M$), an inhibitor of cytoplasmic $Ca^{2+}$-ATPase were also inhibited. However, in the presence of the dopamine $D_1$ receptor antagonist, (R)-(+)-8-chloro-2,3,4,5-tetrahydro-3-methyl-5-phenyl-1H-benzazepine-7-ol(SCH23390, $3{\mu}M$), which is a selective antagonist of dopaminergic $D_1$ receptor, the inhibitory responses of SKF81297($30{\mu}M$) on the CA secretion evoked by ACh, high $K^+$, DMPP, McN-A-343, Bay-K-8644, and cyclopiazonic acid were significantly reduced. Collectively, these experimental results suggest that SKF81297 inhibits the CA secretion from the rat adrenal medulla evoked by cholinergic stimulation(both nicotininc and muscarinic receptors) and membrane depolarization. This inhibitory of SKF81297 seems to be mediated by stimulation of dopaminergic $D_1$ receptors located on the rat adrenomedullary chromaffin cells, which are relevant to extra- and intracellular calcium mobilization. Therefore, it is thought that the presence of the dopaminergic $D_1$ receptors may be involved in regulation of CA release in the rat adrenal medulla.

Influence of Cytisine on Catecholamine Release in Isolated Perfused Rat Adrenal Glands

  • Lim, Dong-Yoon;Jang, Seok-Jeong;Kim, Kwang-Cheol
    • Archives of Pharmacal Research
    • /
    • 제25권6호
    • /
    • pp.932-939
    • /
    • 2002
  • The aim of the present study was to determine the characteristics of cytisine on the secretion of catecholamines (CA) in isolated perfused rat adrenal glands, and to clarify its mechanism of action. The release of CA evoked by the continuous infusion of cytisine ($1.5{\times}10^{-5} M$) was time-dependently reduced from 15 min following the initiation of cytisine infusion. Furthermore, upon the repeated injection of cytisine ($5{\times}10^{-5}$), at 30 min intervals into an adrenal vein, the secretion of CA was rapidly decreased following the second injection. Tachyphylaxis to the release of CA was observed by the repeated administration of cytisine. The cytisine-induced secretion of CA was markedly inhibited by pretreatment with chlorisondamine, nicardipine, TMB-8, and the perfusion of $Ca^{2+}$-free Krebs solution, while it was not affected by pirenzepine or diphenhydramine. Moreover, the secretion of CA evoked by ACh was time-dependently inhibited by the prior perfusion of cytisine ($5{\times}10^{-6} M$). Taken together, these experimental data suggest that cytisine causes secretion of catecholamines from the perfused rat adrenal glands in a calcium-dependent fashion through the activation of neuronal nicotinic ACh receptors located in adrenomedullary chromaffin cells. It also seems that the cytisine-evoked release of catecholamine is not relevant to the activation of cholinergic M$_1$-muscarinic or histaminergic receptors.

Influence of Bradykinin on Catecholamine Release from the Rat Adrenal Medulla

  • Lim, Dong-Yoon;Kim, Il-Hwan;Na, Gwang-Moon;Kang, Moo-Jin;Kim, Ok-Min;Choi, Deok-Ho;Ki, Young-Woo
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제7권4호
    • /
    • pp.231-238
    • /
    • 2003
  • The present study was undertaken to investigate the effect of bradykinin on secretion of catecholamines (CA) evoked by stimulation of cholinergic receptors and membrane depolarization from the isolated perfused model of the rat adrenal glands, and to elucidate its mechanism of action. Bradykinin $(3{\times}10^{-8}M)$ alone produced a weak secretory response of the CA. however, the perfusion with bradykinin $(3{\times}10^{-8}M)$ into an adrenal vein of the rat adrenal gland for 90 min enhanced markedly the secretory responses of CA evoked by ACh $(5.32{\times}10^{-3}M)$, excess $K^+$ ($5.6{\times}10^{-2}M$, a membrane depolarizer), DMPP ($10^{-4}$ M, a selective neuronal nicotinic agonist) and McN-A-343 ($10^{-4}$ M, a selective M1-muscarinic agonist). Moreover, bradykinin ($3{\times}10^{-8}$ M) in to an adrenal vein for 90 min also augmented the CA release evoked by BAY-K-8644, an activator of the dihydropyridine L-type $Ca^{2+}$ channels. However, in the presence of $(N-Methyl-D-Phe^7)$-bradykinin trifluoroacetate salt $(3{\times}10^{-8}M)$, an antagonist of $BK_2$-bradykinin receptor, bradykinin no longer enhanced the CA secretion evoked by Ach and high potassium whereas the pretreatment with Lys-$(des-Arg^9,\;Leu^9)$-bradykinin trifluoroacetate salt $(3{\times}10^{-8}M)$, an antagonist of $BK_1$-bradykinin receptor did fail to affect them. Furthermore, the perfusion with bradykinin $(3{\times}10^{-6}M)$ into an adrenal vein of the rabbit adrenal gland for 90 min enhanced markedly the secretory responses of CA evoked by excess $K^+$ $(5.6{\times}10^{-2}M)$. Collectively, these experimental results suggest that bradykinin enhances the CA secretion from the rat adrenal medulla evoked by cholinergic stimulation (both nicotininc and muscarinic receptors) and membrane depolarization through the activation of $B_2$-bradykinin receptors, not through $B_1$-bradykinin receptors. This facilitatory effect of bradykinin seems to be associated to the increased $Ca^{2+}$ influx through the activation of the dihydropyridine L-type $Ca^{2+}$ channels.