Influence of Cytisine on Catecholamine Release in Isolated Perfused Rat Adrenal Glands

  • Lim, Dong-Yoon (Department of Pharmacology, College of Medicine, Chosun University) ;
  • Jang, Seok-Jeong (Department of Neurosurgery, College of Medicine, Chosun University) ;
  • Kim, Kwang-Cheol (Department of Pharmacology, College of Medicine, Chosun University)
  • Published : 2002.12.01

Abstract

The aim of the present study was to determine the characteristics of cytisine on the secretion of catecholamines (CA) in isolated perfused rat adrenal glands, and to clarify its mechanism of action. The release of CA evoked by the continuous infusion of cytisine ($1.5{\times}10^{-5} M$) was time-dependently reduced from 15 min following the initiation of cytisine infusion. Furthermore, upon the repeated injection of cytisine ($5{\times}10^{-5}$), at 30 min intervals into an adrenal vein, the secretion of CA was rapidly decreased following the second injection. Tachyphylaxis to the release of CA was observed by the repeated administration of cytisine. The cytisine-induced secretion of CA was markedly inhibited by pretreatment with chlorisondamine, nicardipine, TMB-8, and the perfusion of $Ca^{2+}$-free Krebs solution, while it was not affected by pirenzepine or diphenhydramine. Moreover, the secretion of CA evoked by ACh was time-dependently inhibited by the prior perfusion of cytisine ($5{\times}10^{-6} M$). Taken together, these experimental data suggest that cytisine causes secretion of catecholamines from the perfused rat adrenal glands in a calcium-dependent fashion through the activation of neuronal nicotinic ACh receptors located in adrenomedullary chromaffin cells. It also seems that the cytisine-evoked release of catecholamine is not relevant to the activation of cholinergic M$_1$-muscarinic or histaminergic receptors.

Keywords

References

  1. Anton, A H. and Sayre, D. F.: A study of the factors affecting the aluminum oxide trihydroxyindole procedure for the analysis of catecholamines. J. Pharmacal. Exp. Ther., 138, 360-375 (1962)
  2. Baker, P. F. and Knight, D. E.: Calcium-dependent exocytosis in bovineadrenal meduallary cellswith leaky plasma membrane. Nature, 276, 620-622 (1978) https://doi.org/10.1038/276620a0
  3. Baker, P. F., and Knight, D. E.: The relation between ionized calcium and cortical granule exocytosis in eggs of the sea urchin Echinus esculentus. Pro. R. Soc. London. Ser., 207, 129-161 (1980) https://doi.org/10.1098/rspb.1980.0017
  4. Boxler, E.: Role of calcium in initiation of activity of smooth muscle. Am, Physiol., 216, 671-674. (1967)
  5. Casteels, R. and Raeymaekers, L.: The action of acetylcholine and catecholamines on an intracellular calcium store in the smooth muscle cells of the guinea-pig taenia cells. J. Physiol., 294, 51-68 (1979) https://doi.org/10.1113/jphysiol.1979.sp012914
  6. Chiou, C. Y. and Malagodi, M. H.: Studies on the mechanism of action of a new antagonist (N,N-diethylamino-octy1-3,4,5trimelhoxybenzoate hydrochloride in smooth and skeletal muxcles. Br. J. Pharmacol., 53, 279-285 (1979)
  7. Collett, A. R., and Story, D. F., Effects of adrenoceptor antagonists and neuronal uptake inhibitors on dimethylphenyl-piperazinium-induced release of catecholamines from the rabbit isolated adrenal qland and quineapia atria. J. Pharmacol. Exp. Ther., 23(2), 379-386 (1984)
  8. Dixon, W. R., Garcia, A. G., and Kirkekar, S. M.: Release of catecholamines and dopamine-$\beta$-hydroxylase from the rat adrenalgland of the cat. J. Physiol., 244, 805-824 (1975) https://doi.org/10.1113/jphysiol.1975.sp010827
  9. Doods, H. N., Mathy, M. J., Davidesko, D., Van Charldorp, K. J., De Jonge, A., and Van Xwieten, P. A: Selectivityof muscarinic aqonists in radioligan and in vivo experiments for the putative $M_1$.$M_2$and $M_3$ receptors. J. Pharmacol. Exp. Ther., 242, 257-262 (1987)
  10. Douglas, W. W.: Stimulus-secretion coupling: The concept and clues from chromaffin and other cells. Br. J. Pharmacol., 34, 451-474 (1968) https://doi.org/10.1111/j.1476-5381.1968.tb08474.x
  11. Eglen, R. M. and Whiting, R. L.: Muscarinic receptor subtypes: A critique of the current classification and a proposal for a working nomenclature. J. Auton. Pharmacol., 5, 323-346 (1986)
  12. Gallardo, K. A. and Lesie, F. M.: Nicotine-stimulated release of [$^{3}H$] rorepinephrine from fetal rat locus coeruleus cells in culture J. Neurochem., 70, 663-670 (1998) https://doi.org/10.1046/j.1471-4159.1998.70020663.x
  13. Hammer, R., Verrie, C. P., Birdsall, N. J. M., Brugen, A S. N., and Hulme, E. C.: Pirenzepine distinguishes between subclasses of muscarinicreceptors. Nature, 283, 90-92 (1980) https://doi.org/10.1038/283090a0
  14. Hammer, R. and Giachetti, A.: Muscarinic receptor subtypes: $M_1$ and $M_2$ biochemical and functional characterization. Life Sci., 3, 1, 2991-2998 (1982)
  15. Hardman, J. G., Limbird, L. E., Molinoff, P. B., Ruddon, R. R., and Gilman, A. G.: Goodman & Gilman's Pharmacological Basis of Therapeutics, 9th Ed. McGrraw-Hill, pp.193-195, (1995)
  16. Kilpatrick, D. L., Slepetis, R. J., Corcoran. J. J., and Jirshner, N.: Calcium uptake and catecholamine secretion by cultured bovine adrenal medulla cells. J. Neurochem., 38, 427-435 (1982) https://doi.org/10.1111/j.1471-4159.1982.tb08647.x
  17. Kilpatiick D. L., Slepetis, R., and Kirshner, N.: Ion channels and memb ane potential in stimulus-secretion coupling in adrenal medulla cells. J. Neurochem., 36, 1245-1255 (1981) https://doi.org/10.1111/j.1471-4159.1981.tb01724.x
  18. Knigh, D. E. and Desteven, N. T.: Evoked transient intracellular free $Ca^{2+}$ changes and secretion in isolated bovine adrenal medullary cells. Proc. R. Soc. Lond. B., 218, 177-199 (1983) https://doi.org/10.1098/rspb.1983.0033
  19. Lim, D. Y. and Hwang, D. H.: Studies on secretion of catecholarrines evoked by DMPP and McN-A-343 in the rat adrenal gland. Korean J. Pharmacol., 27(1), 53-67 (1991)
  20. Lim, D. Y, Lee, J. H., Kim, W. S., Lee, E. H., Kim, S. P., Lee, B. J., me Koh, S. T.: Studies on secretion of catecholamines eveoked by caffeine from the isolated perfused rat adrenal glands. Arch. Pharmac. Res., 14(1), 55-67 (1991) https://doi.org/10.1007/BF02857816
  21. Luetjs, C. W. and Patrick, J.: (1990). Both $\alpha$-and-$\beta$-subunits contribute to the agonist sensitivity of neuronal nicotinic receptors, J. Neurosci., 11, 837-845 (1991) https://doi.org/10.1523/JNEUROSCI.11-03-00837.1991
  22. Malagodi, M. H., and Chiou, C. Y: Pharmacological evaluation of a new $Ca^{2+}$ antagonist, 8-(N,N-diethylamino)-octyl-3,4,6-trimethoxybenzoate hydrochloride) [TMB-8]: Studies in smooth muscle, Eur J. Pharmacol., 27, 25-33 (1974) https://doi.org/10.1016/0014-2999(74)90198-8
  23. Marks, M. J., Farnham, D. A., Grady, S. R., and Collins, A. C.: Nicotiric receptor function determined by stimulation of rub dium efflux from mouse brain synaptosomes. J. Pharmacol. Exp. Ther., 264, 542-552 (1993)
  24. Martino-Barrows, A. M. and Kellar, K. J.: [$^{3}H$] Acetylcholine and [$^{3}H$] (-) nicotine level the same recognition site in rat brain. Mol. Pharmacol., 31, 169-174 (1974)
  25. Misbanuddin, M., Isosaki, M., Houchi, H., and Oka, M.: Muscarnic receptor-mediated increase in cytoplasmic free $Ca^{2+}$ in isolated bovine adrenal medullary cells. Effects of TMB-8 and phorbor ester TPA. FEBS Lett., 190, 25-28 (1985) https://doi.org/10.1016/0014-5793(85)80419-1
  26. Mizoce, F. and Livett, B. G.: Nicotine stimulates secretion of both catecholamines and acetylcholinesterase from cultured addrenal chromaffin cells. J. Neurochem., 3(4), 871-876 (1983)
  27. Ohashi, H., Takewaki, T., and Okada, T.: Calcium and the contraetile effect of carbachol in the depolarized guinea pig taenia caecum. Jap. J. Pharmacol., 24, 601-611 (1974) https://doi.org/10.1254/jjp.24.601
  28. Pabreza, L. A., Dhawan, S., and Kellar, K. J.: [$^{3}H$] Cytisine binding to nicotinic cholinergic receptors in brain. Mol. Pharmacol., 39, 9-12 (1991)
  29. Papke, R. L. and Heinemann, S. F.: Partial agonist properties of cytisine on neuronal nicotinic receptors containing the $\beta$2 subunit. Mol. Pharmacol., 45, 142-149 (1994)
  30. Rapiere, C., Lunt, G. G., and Wonnacott, S.: Nicotinic modulatior of [$^{3}H$] dopamine release from striatal synaptosomes. Pharrr acological characterization. J. Neurochem., 54, 937-945 (1990) https://doi.org/10.1111/j.1471-4159.1990.tb02341.x
  31. Romano, C. and Goldstein, A.: Stereo specific nicotine receptors on rat brain membranes. Science(Washington D.C.), 210, 647-649 (1980) https://doi.org/10.1126/science.7433991
  32. Sasakawa, N., Yamamoto, S., Ishii, K., and Kato, R: Ingibition of calcium uptake and catecholamine release by 8-(N,N-dietylamino)-octyl-3,4,5-trimethoxy benzoate hydrochloride (TMB-8) in cultured bovine adrenal chromaffin cells. Biochem. Phamacol., 33, 4093-4067 (1984)
  33. Schulz, I. and Stolze, H. H.: The exocrine pancrease: The role of secretagogues cyclic nucleotides and calcium in enzyme secretion. Ann. Rev. Physiol., 42, 127-156 (1980) https://doi.org/10.1146/annurev.ph.42.030180.001015
  34. Schwartz, R. D., McGee, R., and Dellar, K. J.: Nicotinic cholinergic receptors labeled by [$^{3}H$]acetylcholine in rat brain. Mol. Pharmacol., 22, 56-62 (1982)
  35. Singh, S. and Prior, C.: Prejunctionl actions of the nicotinic acetylcholine receptor agonist cytisine at the rat neuromuscular junction. Naunyn-Schmiedebergs Arch. Pharmacol., 1(suppl 1), R86-R86 (1998)
  36. Takahara, A., Suzuki-Husaba, M., Hisa, H., and Satoh, S.: Effects of a novel $Ca^{2+}$ entry blocker, CD-349, and TMB-8 on renal vasoconstriction induced by angiotensin II and vasopressin in dogs. J. Cardiovasc. Pharmacol., 16, 966-970 (1990) https://doi.org/10.1097/00005344-199012000-00016
  37. Tallarida, R. J. and Murray, R. E.: Manual of phannacologic calculations with computer programs. 2nd ed., Springer-Verlag, New York, pp. 132, (1987)
  38. Viveros, O. H., Arqueros, L. C., and Kirshner, N.: Release of catecholanines and dopamine beta-hydroxylase from the adrenal medulla. Life Sci., 7, 609-618 (1968) https://doi.org/10.1016/0024-3205(68)90186-0
  39. Viveros, O. H.: Mechanism of secretion of catecholamines from adrenal medulla. In Handbook of Physiolgy,Endocrinology. Vol Sect. The adrenal gland. Americal physiological society, Washington ED, pp.389-426 (1975)
  40. Wakade, A. R: Studies on secretion of catecholamines evoked by acetylcholine or transmural stimulation of the rat adrenal gland. J. Physiol., 313, 463-480 (1981) https://doi.org/10.1113/jphysiol.1981.sp013676
  41. Wakade, A. R: Studies on secretion of catecholamines evoked by acetylcholine or transmural stimulation of the rat adrenal gland. J. Physiol., 313, 463-480 (1981) https://doi.org/10.1113/jphysiol.1981.sp013676
  42. Wenger, B. W., Bryant, R., Boyd, T., and McKay, D. B.: Evidence for spare nicotinic acetylcholine receptors and a $\beta$4 subunit in bovine adrenal chromaffin cells: Studies using bromoacetylcholine, epibatidine, cytisine and mAb35. J. Pharmacol. Exp. Ther., 281, 905-913 (1997)
  43. Williams, J. A.: Regulation of pancreatic acinal cell function by intracellular calcium. Science, 177, 1104-1105 (1980) https://doi.org/10.1126/science.177.4054.1104
  44. Yamada, Y., Teraoka, H., Nakazato, Y., and Ohga, A.: Intracellular $Ca^{2+}$ antagonist TMB-8 blocks catecholamine secretion evoked by caffeine and acetylcholine from perfused cat adrenal qlands in the absence of extracellular $Ca^{2+}$. Neuroscience Lett., 90, 338-342 (1988) https://doi.org/10.1016/0304-3940(88)90212-1