Browse > Article

Influence of Bradykinin on Catecholamine Release from the Rat Adrenal Medulla  

Lim, Dong-Yoon (Department of Pharmacology, College of Medicine, Chosun University)
Kim, Il-Hwan (Department of Pharmacology, College of Medicine, Chosun University)
Na, Gwang-Moon (Department of Pharmacology, College of Medicine, Chosun University)
Kang, Moo-Jin (Department of Pharmacology, College of Medicine, Chosun University)
Kim, Ok-Min (Department of Pharmacology, College of Medicine, Chosun University)
Choi, Deok-Ho (Department of Pharmacology, College of Medicine, Chosun University)
Ki, Young-Woo (Department of Pharmacology, College of Medicine, Chosun University)
Publication Information
The Korean Journal of Physiology and Pharmacology / v.7, no.4, 2003 , pp. 231-238 More about this Journal
Abstract
The present study was undertaken to investigate the effect of bradykinin on secretion of catecholamines (CA) evoked by stimulation of cholinergic receptors and membrane depolarization from the isolated perfused model of the rat adrenal glands, and to elucidate its mechanism of action. Bradykinin $(3{\times}10^{-8}M)$ alone produced a weak secretory response of the CA. however, the perfusion with bradykinin $(3{\times}10^{-8}M)$ into an adrenal vein of the rat adrenal gland for 90 min enhanced markedly the secretory responses of CA evoked by ACh $(5.32{\times}10^{-3}M)$, excess $K^+$ ($5.6{\times}10^{-2}M$, a membrane depolarizer), DMPP ($10^{-4}$ M, a selective neuronal nicotinic agonist) and McN-A-343 ($10^{-4}$ M, a selective M1-muscarinic agonist). Moreover, bradykinin ($3{\times}10^{-8}$ M) in to an adrenal vein for 90 min also augmented the CA release evoked by BAY-K-8644, an activator of the dihydropyridine L-type $Ca^{2+}$ channels. However, in the presence of $(N-Methyl-D-Phe^7)$-bradykinin trifluoroacetate salt $(3{\times}10^{-8}M)$, an antagonist of $BK_2$-bradykinin receptor, bradykinin no longer enhanced the CA secretion evoked by Ach and high potassium whereas the pretreatment with Lys-$(des-Arg^9,\;Leu^9)$-bradykinin trifluoroacetate salt $(3{\times}10^{-8}M)$, an antagonist of $BK_1$-bradykinin receptor did fail to affect them. Furthermore, the perfusion with bradykinin $(3{\times}10^{-6}M)$ into an adrenal vein of the rabbit adrenal gland for 90 min enhanced markedly the secretory responses of CA evoked by excess $K^+$ $(5.6{\times}10^{-2}M)$. Collectively, these experimental results suggest that bradykinin enhances the CA secretion from the rat adrenal medulla evoked by cholinergic stimulation (both nicotininc and muscarinic receptors) and membrane depolarization through the activation of $B_2$-bradykinin receptors, not through $B_1$-bradykinin receptors. This facilitatory effect of bradykinin seems to be associated to the increased $Ca^{2+}$ influx through the activation of the dihydropyridine L-type $Ca^{2+}$ channels.
Keywords
Bradykinin; Catecholamine release; Adrenal medulla; Bradykinin $B_2-recepotors$;
Citations & Related Records

Times Cited By SCOPUS : 0
연도 인용수 순위
  • Reference
1 Anton AH, Sayre DF. A study of the factors affecting the aluminum oxide trihydroxy indole procedure for the analysis of catecholamines. J Pharmacol Exp Ther 138: 360-375, 1962
2 Burgoyne RD. Mechanism of secretion from adrenal chromaffin cells. Biochem Biophys Acta 779: 201-216, 1984   DOI   PUBMED   ScienceOn
3 Chulak C, Couture R, Foucart S. Modulatory effect of bradykinin on the release of noradrenaline from rat isolated atria. Br J Pharmacol 115: 330-334, 1995   DOI   PUBMED   ScienceOn
4 Dendorfer A, Dominiak P. Characterisation of bradykinin receptors mediating catecholamine release in PC12 cells. Naunyn- Schmiedeberg's Arch Pharmacol 351: 274-281, 1995   PUBMED
5 Di Virgilio F, Milani D, Leon A, Meldolesi J, Pozzan T. Voltagedependent activation and inactivation of calcium channels in PC12 cells. Correlation with neurotransmitter release. J Biol Chem 262(19): 9189-9195, 1987   PUBMED
6 Gandia L, Borges R, Albillos A, Garcia AG. Multiple calcium channel subtypes in isolated rat chromaffin cells. Pflgers Arch 430: 55-63, 1995.   DOI   ScienceOn
7 Garcia AG, Sala F, Reig JA, Viniegra S, Frias J, Fonteriz R, Gandia L. Dihydropyridine Bay-K-8644 activates chromaffin cell calcium channels. Nature 309: 69-71, 1984.   DOI   ScienceOn
8 Li Q, Zhang J, Loro JF, Pfaffendorf M, van Zwieten PA. Bradykinin B2-receptor-mediated positive chronotropic effect of bradykinin in isolated rat atria. J Cardiovasc Pharmacol 32(3): 452-456, 1998   DOI   ScienceOn
9 Rabe CS, Delorme E, Weight FF. Muscarine-stimulated neurotransmitter release from PC12 cells. J Pharmacol Exp Ther 243(2): 534-541, 1987
10 Ransom JT, Cherwinski HlA, Dunne JF, Sharif NA. Flow cytometric analysis of internal calcium mobilization via a B2-bradykinin receptor on a subclone of PC12 cells. J Neurochem 56: 983-989, 1991   DOI   PUBMED
11 Schramm M, Thomas G, Towart R, Franckowiak G. Novel dihydropyridines with positive inotropic action through activation of Ca2$^+$ channels. Nature 303: 535-537, 1982   DOI   ScienceOn
12 Clementi E, Scheer H, Zacchetti D, Fasolato C, Pozzan T, Meldolesi J. Receptor-activated Ca2$^+$ influx. J Biol Chem 4: 2164-2172, 1992
13 Schwieler JH, Kahan T, Nussberger J, Hjemdahl P. Converting enzyme inhibition modulates sympathetic neurotransmission in vivo via multiple mechanisms. Am J Physiol 264(4 Pt 1): E631- 637, 1993
14 Starke K, Peskar BA, Schumacher KA, Taube JD. Bradykinin and postganglionic sympathetic transmission. Naunyn-Schmiedeberg's Arch Pharmacol 299: 23-32, 1977   DOI   ScienceOn
15 Yamada Y, Teraoka H, Nakazato Y, Ohga A. Intracellular Ca2$^+$ antagonist TMB-8 blocks catecholamine secretion evoked by caffeine and acetylcholine from perfused cat adrenal glands in the absence of extracellular ca2$^+$. Neurosci Lett 90: 338-342, 1988   DOI   ScienceOn
16 Weiss C, Atlas D. The bradykinin receptor-a putative receptoroperated channel in PCl 2 cells: studies of neurotransmitter release and inositol phosphate accumulation. Brain Res 543(1): 102-110, 1991   DOI   ScienceOn
17 Appell KC, Barefoot DS. Neurotransmitter release from bradykinin- stimulated PC12 cells. Stimulation of cytosolic calcium and neurotransmitter release. Biochem J 263(1): 11-18, 1989   DOI
18 Akaike A, Mine Y, Sasa M, Takaori S. Voltage and current clamp studies of muscarinic and nicotinic excitation of the rat adrenal chromaffin cells. J Pharmacol Expt Ther 255: 333-339, 1990
19 Inoue M, Kuriyama H. Muscarinic receptor is coupled with a cation channel through a GTP-binding protein in guinea-pig chromaffin cells. J Physiol (Lond) 436: 511-529, 1991   DOI
20 Ritchi AK. Catecholamine secretion in a rat pheochromocytoma cell line: Two pathways for calcium entry. J Physiol 286: 541-561, 1979   DOI   PUBMED
21 Regoli D, Jukic D, Gobeil F, Rhaleb NE. Receptors for bradykinin and related kinins: a critical analysis. Can J Physiol Pharmacol 71: 556-567, 1993   DOI   PUBMED   ScienceOn
22 Misbahuddin M, Oka M. Muscarinic stimulation of guinea pig adrenal chromaffin cells stimulates catecholamine secretion without significant increase in Ca2$^+$ uptake. Neurosci Lett 87: 266-270, 1988   DOI   ScienceOn
23 van Calker D, Assmann K, Greil W. Stimulation by bradykinin, angiotensin II, and carbachol of the accumulation of inositol phosphates in PC-12 pheochromocytoma cells: differential effects of lithium ions on inositol mono- and polyphosphates. J Neurochem 49(5): 1379-1385, 1987   DOI   PUBMED
24 Braas KM, Manning DC, Perry DC, Snyder SH. Bradykinin analogues: differential agonist and antagonist activities suggesting multiple receptors. Br J Pharmacol 94: 3-5, 1988   DOI   PUBMED   ScienceOn
25 Kim KT, Westhead EW. Cellular responses to Ca2$^+$ from extracellular and intracellular sources are different as shown by simultaneous measurements of cytosolic Ca2$^+$ and secretion from bovine chromaffin cells. Proc Natl Acad Sci USA 86: 9881-9885, 1989   DOI   ScienceOn
26 Kimura T, Shimamura T, Satoh S. Effects of pirenzepine and hexamethonium on adrenal catecholamine release in responses to endogenous and exogenous acetylcholine in anesthetized dogs. J Cardiovasc Pharmacol 20: 870-874, 1992   DOI   ScienceOn
27 Challis RAJ, Jones JA, Owen PJ, Boarder MR. Changes in inositol 1,4,5-trisphosphate and inositol 1,3,4,5-tetrakisphosphate mass accumulations in cultured adrenal chromaffin cells in response to bradykinin and histamine. J Neurochem 56: 1083-1086, 1991   DOI   PUBMED
28 Greene LA, Rein G. Release of (3H)norepinephrine from a clonal line of pheochromocytoma cells (PC12) by nicotinic cholinergic stimulation. Brain Res 138(3): 521-528, 1977   DOI   ScienceOn
29 Reissmann S, Schwuchow C, Seyfarth L, De Castro LFP, Liebmann C, Paegelow I, Werner H, Stewart JM. Highly selective bradykinin agonists and antagonists with replacement of proline residues by N-methyl-D- and L-phenylalanine. J Med Chem 39(4): 929-936, 1996   DOI   ScienceOn
30 Llona I, Vavrek R, Stewart J, Huidobro-Toro JP. Identification of pre-and postsynaptic bradykinin receptor sites in the vas deferens: evidence for different structural prerequisites. J Pharmacol Exp Ther 24l: 608-614, 1987
31 Dray A, Bettaney J, Forster P, Perkins MN. Activation of a bradykinin receptor in peripheral nerve and spinal cord in the neonatal rat in vitro. Br J Pharmacol 95: 1008-1010, 1988   DOI   PUBMED   ScienceOn
32 Greene LA, Tischler AS. Establishment of a noradrenergic clonal line of rat adrenal pheochromocytoma cells which respond to nerve growth factor. Proc Natl Acad Sci USA 73: 2424-2428, 1976   DOI   ScienceOn
33 Wakade AR. Studies on secretion of catecholamines evoked by acetylcholine or transmural stimulation of the rat adrenal gland. J Physiol 313: 463-480, 1981   DOI   PUBMED
34 Grohovaz F, Zacchetti D, Clementi E, Lorenzon P, Meldolesi J, Fumagalli G. $[Ca^{2+}]_i$ imaging in PC12 cells: Multiple response patterns to receptor activation reveal new aspects of transmembrane signaling. J Cell Biol 113: 1341-1350, 1991   DOI   ScienceOn
35 Uceda G, Artalejo AR, de la Fuente MT, Lopez MG, Albillos A, Michelena P, Garcia AG, Montiel C. Modulation by L-type Ca2$^+$ channels and apamin-sensitive K$^+$ channels of muscarinic responses in cat chromaffin cells. Am J Physiol 266(5 Pt 1): C1432 -1439, 1994   DOI
36 Vicentini LM, Ambrosini A, Di Virgilio F, Pozzan T, Meldolesi J. Muscarinic receptor-induced phosphoinositide hydrolysis at resting cytosolic Ca2$^+$ concentration in PC12 cells. J Cell Biol 100(4): 1330-1333, 1985   DOI   ScienceOn
37 Berridge MJ, Irvine RF. Inositol phosphates and cell signalling. Nature (Lond) 341: 197-205, 1989   DOI   ScienceOn
38 Warashina A. Potentiation by indomethacin of receptor-mediated catecholamine secretion in rat adrenal medulla. Jpn J Pharmacol 73: 197-205, 1997   DOI
39 Lim DY, Hwang DH. Studies on secretion of catecholamines evoked by DMPP and McN-A-343 in the rat adrenal gland. Korean J Pharmacol 27(1): 53-67, 1991
40 Suzuki M, Muraki K, Imaizumi Y, Watanabe M. Cyclopiazonic acid, an inhibitor of the sarcoplasmic reticulum Ca2$^+$-pump, reduces Ca2$^+$-dependent K$^+$ currents in guinea-pig smooth muscle cells. Br J Pharmacol 107: 134-140, 1992   DOI   PUBMED   ScienceOn
41 Ilno M. Calcium-induced calcium release mechanism in guinea pig taenia caeci. J Gen Physiol 94: 363-383, 1989   DOI   PUBMED   ScienceOn
42 MacNeil T, Feighner S, Hreniuk DL, Hess JF, Van der Ploeg LH. Partial agonists and full antagonists at the human and murine bradykinin B1 receptors. Can J Physiol Pharmacol 75(6): 735- 740, 1997   DOI   ScienceOn
43 Uyama Y, Imaizumi Y, Watanabe M. Effects of cyclopiazonic acid, a novel Ca2+-ATPase inhibitor on contractile responses in skinned ileal smooth muscle. Br J Pharmacol 106: 208-214, 1992   DOI   PUBMED   ScienceOn
44 Kuo YJJ, Keeton TK. Captopril increases norepinephrine spillover rate in conscious spontaneously hypertensive rats. J Pharmacol Exp Ther 258: 223-231, 1991
45 Fasolato C, Pandiella A, MeMolesi J, Pozzan T. Generation of inositol phosphates, cytosolic Ca2$^+$, and ionic fluxes in PC12 cells treated with bradykinin. J Biol Chem 263(33): 17350-17359, 1988   PUBMED
46 Purkiss JR, Nahorski SR, Willars GB. Mobilization of inositol 1,4,5-trisphosphate-sensitive $Ca^{2+}$ stores supports bradykininand muscarinic-evoked release of [3H] noradrenaline from SHSY5Y cells. J Neurochem 64(3): 1175-1182, 1995   DOI   PUBMED   ScienceOn
47 Dendorfer A, Fitschen M, Raasch W, Tempel K, Dominiak P. Mechanisms of bradykinin-induced catecholamine release in pithed spontaneously hypertensive rats. Immunopharmacology 44(1-2): 99-104, 1999   DOI
48 Hammer R, Giachetti A. Muscarinic receptor subtypes: M1 and M2 biochemical and functional characterization. Life Sci 31: 2992-2998, 1982
49 Hatta E, Maruyama R, Marshall SJ, Imamura M, Levi R. Bradykinin promotes ischemic norepinephrine release in guinea pig and human hearts. J Pharmacol Exp Ther 288(3): 919-927, 1999
50 Llona L, Gallegllinos X, Belmar J, Huidobro-Toro JP. Bradykinin modulates the release of noradrenaline from vas deferens nerve terminals. Life Sci 48: 2585-2592, 1991   DOI   ScienceOn
51 Tallarida RJ, Murray RB. Manual of pharmacologic calculation with computer programs. 2nd Ed. New York, Speringer-Verlag, p 132, 1987
52 Wada Y, Satoh K, Taira N. Cardiovascular profile of Bay-K-8644, a presumed calcium channel activator in the dog. Naunyn- Schmiedebergs Arch Pharmacol 328: 382-387, 1985   DOI   ScienceOn
53 McDonald RL, Kaye DF, Reeve HL, Ball SG, Peers C, Vaughan PFT. Bradykinin-evoked release of $[^3H]$noradrenaline from the human neuroblastoma SH-SY5Y. Biochem Pharmacol 48: 23-30, 1994   DOI   ScienceOn
54 Nakazato Y, Oleshanskly M, Tomita U, Yamada Y. Voltage-independent catecholamine release mediated by the activation of muscarinic receptors in guinea-pig adrenal glands. Br J Pharmacol 93: 101-109, 1988   DOI   PUBMED   ScienceOn
55 Pozzan T, Gatti G, Dozio N, Vicemini, LM, Meldolesi J. Ca2$^+$-dependent and -lndependent release of neurotransmitters from PCI2 cells: A role for protein kinase C activation. J Cell Biol 99: 628-638, 1984   DOI   ScienceOn