• Title/Summary/Keyword: Raspberry Pi4

Search Result 99, Processing Time 0.024 seconds

A Performance Comparison of Parallel Programming Models on Edge Devices (엣지 디바이스에서의 병렬 프로그래밍 모델 성능 비교 연구)

  • Dukyun Nam
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.18 no.4
    • /
    • pp.165-172
    • /
    • 2023
  • Heterogeneous computing is a technology that utilizes different types of processors to perform parallel processing. It maximizes task processing and energy efficiency by leveraging various computing resources such as CPUs, GPUs, and FPGAs. On the other hand, edge computing has developed with IoT and 5G technologies. It is a distributed computing that utilizes computing resources close to clients, thereby offloading the central server. It has evolved to intelligent edge computing combined with artificial intelligence. Intelligent edge computing enables total data processing, such as context awareness, prediction, control, and simple processing for the data collected on the edge. If heterogeneous computing can be successfully applied in the edge, it is expected to maximize job processing efficiency while minimizing dependence on the central server. In this paper, experiments were conducted to verify the feasibility of various parallel programming models on high-end and low-end edge devices by using benchmark applications. We analyzed the performance of five parallel programming models on the Raspberry Pi 4 and Jetson Orin Nano as low-end and high-end devices, respectively. In the experiment, OpenACC showed the best performance on the low-end edge device and OpenSYCL on the high-end device due to the stability and optimization of system libraries.

A Real Time Low-Cost Hand Gesture Control System for Interaction with Mechanical Device (기계 장치와의 상호작용을 위한 실시간 저비용 손동작 제어 시스템)

  • Hwang, Tae-Hoon;Kim, Jin-Heon
    • Journal of IKEEE
    • /
    • v.23 no.4
    • /
    • pp.1423-1429
    • /
    • 2019
  • Recently, a system that supports efficient interaction, a human machine interface (HMI), has become a hot topic. In this paper, we propose a new real time low-cost hand gesture control system as one of vehicle interaction methods. In order to reduce computation time, depth information was acquired using a time-of-flight (TOF) camera because it requires a large amount of computation when detecting hand regions using an RGB camera. In addition, fourier descriptor were used to reduce the learning model. Since the Fourier descriptor uses only a small number of points in the whole image, it is possible to miniaturize the learning model. In order to evaluate the performance of the proposed technique, we compared the speeds of desktop and raspberry pi2. Experimental results show that performance difference between small embedded and desktop is not significant. In the gesture recognition experiment, the recognition rate of 95.16% is confirmed.

Timely Sensor Fault Detection Scheme based on Deep Learning (딥 러닝 기반 실시간 센서 고장 검출 기법)

  • Yang, Jae-Wan;Lee, Young-Doo;Koo, In-Soo
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.20 no.1
    • /
    • pp.163-169
    • /
    • 2020
  • Recently, research on automation and unmanned operation of machines in the industrial field has been conducted with the advent of AI, Big data, and the IoT, which are the core technologies of the Fourth Industrial Revolution. The machines for these automation processes are controlled based on the data collected from the sensors attached to them, and further, the processes are managed. Conventionally, the abnormalities of sensors are periodically checked and managed. However, due to various environmental factors and situations in the industrial field, there are cases where the inspection due to the failure is not missed or failures are not detected to prevent damage due to sensor failure. In addition, even if a failure occurs, it is not immediately detected, which worsens the process loss. Therefore, in order to prevent damage caused by such a sudden sensor failure, it is necessary to identify the failure of the sensor in an embedded system in real-time and to diagnose the failure and determine the type for a quick response. In this paper, a deep neural network-based fault diagnosis system is designed and implemented using Raspberry Pi to classify typical sensor fault types such as erratic fault, hard-over fault, spike fault, and stuck fault. In order to diagnose sensor failure, the network is constructed using Google's proposed Inverted residual block structure of MobilieNetV2. The proposed scheme reduces memory usage and improves the performance of the conventional CNN technique to classify sensor faults.

IoT based real time agriculture farming

  • Mateen, Ahmed;Zhu, Qingsheng;Afsar, Salman
    • International journal of advanced smart convergence
    • /
    • v.8 no.4
    • /
    • pp.16-25
    • /
    • 2019
  • The Internet of things (IOT) is remodeling the agribusiness empowering the agriculturists through the extensive range of strategies, for example, accuracy as well as practical farming to deal with challenges in the field. The paper aims making use of evolving technology i.e. IoT and smart agriculture using automation. The objective of this research paper to present tools and best practices for understanding the role of information and communication technologies in agriculture sector, motivate and make the illiterate farmers to understand the best insights given by the big data analytics using machine learning. The methodology used in this system can monitor the humidity, moisture level and can even detect motions. According to the data received from all the sensors the water pump, cutter and sprayer get automatically activated or deactivated. we investigate a remote monitoring system using Wi-Fi. These nodes send data wirelessly to a central server, which collects the data, stores it and will allow it to be analyzed then displayed as needed and can also be sent to the client mobile.

Development of Interactive Hologram Education System based on Speech Recognition - Live Map (음성인식 기반 대화형 홀로그램 교육 시스템의 개발 및 평가에 관한 연구 - 라이브맵(Live Map))

  • Kwon, Chongsan;Lee, Dong-Heon;Moon, Mikyeong
    • Journal of Industrial Convergence
    • /
    • v.17 no.4
    • /
    • pp.69-75
    • /
    • 2019
  • In this study, we developed a world map learning system for elementary education that uses Google Cloud platform STT, Dialog Flow, and fan holograms to recognize the voices of learners and to show and explain three-dimensional images of suitable results as holograms. As a result of the experiments and interviews, it is expected to be helpful for improving the learning effect by inducing students' interest and immersion and is expected to be effectively used for collaborative learning and education for students with disabilities.

Implementation of AIoT Edge Cluster System via Distributed Deep Learning Pipeline

  • Jeon, Sung-Ho;Lee, Cheol-Gyu;Lee, Jae-Deok;Kim, Bo-Seok;Kim, Joo-Man
    • International journal of advanced smart convergence
    • /
    • v.10 no.4
    • /
    • pp.278-288
    • /
    • 2021
  • Recently, IoT systems are cloud-based, so that continuous and large amounts of data collected from sensor nodes are processed in the data server through the cloud. However, in the centralized configuration of large-scale cloud computing, computational processing must be performed at a physical location where data collection and processing take place, and the need for edge computers to reduce the network load of the cloud system is gradually expanding. In this paper, a cluster system consisting of 6 inexpensive Raspberry Pi boards was constructed to perform fast data processing. And we propose "Kubernetes cluster system(KCS)" for processing large data collection and analysis by model distribution and data pipeline method. To compare the performance of this study, an ensemble model of deep learning was built, and the accuracy, processing performance, and processing time through the proposed KCS system and model distribution were compared and analyzed. As a result, the ensemble model was excellent in accuracy, but the KCS implemented as a data pipeline proved to be superior in processing speed..

Design and implementation of IoT platform for collecting and managing the SmartFactory environment information

  • Kim, SungJin;Ra, SangYong;Kim, HwanSeog;Choi, JaeHong;Lee, JunDong
    • Journal of the Korea Society of Computer and Information
    • /
    • v.24 no.6
    • /
    • pp.109-115
    • /
    • 2019
  • Smart Factory is a part of and a key point of the 4th industrial revolution. It performs optimization from the whole viewpoint, using comprehensive data of the post-process data by utilizing various sensors, controllers, and mobile devices beyond the existing factory automation level. In this paper, we design and implement an IoT platform that can detect the safety factors of the workers, the environmental factors of the factory, and real time monitoring at the control center, among the fields to implement smart factory. To accomplish this, we construct a monitoring device that provides sensor information control, server transmission of sensor information, and visualization of collected information. By using this system, it is possible to maintain the temperature and humidity for the optimum working environment in the factory. and also, By using the beacon, it is possible to measure the working time of the worker and trace the position.

Traffic Signal Detection and Recognition Using a Color Segmentation in a HSI Color Model (HSI 색상 모델에서 색상 분할을 이용한 교통 신호등 검출과 인식)

  • Jung, Min Chul
    • Journal of the Semiconductor & Display Technology
    • /
    • v.21 no.4
    • /
    • pp.92-98
    • /
    • 2022
  • This paper proposes a new method of the traffic signal detection and the recognition in an HSI color model. The proposed method firstly converts a ROI image in the RGB model to in the HSI model to segment the color of a traffic signal. Secondly, the segmented colors are dilated by the morphological processing to connect the traffic signal light and the signal light case and finally, it extracts the traffic signal light and the case by the aspect ratio using the connected component analysis. The extracted components show the detection and the recognition of the traffic signal lights. The proposed method is implemented using C language in Raspberry Pi 4 system with a camera module for a real-time image processing. The system was fixedly installed in a moving vehicle, and it recorded a video like a vehicle black box. Each frame of the recorded video was extracted, and then the proposed method was tested. The results show that the proposed method is successful for the detection and the recognition of traffic signals.

Smart Mirror for Facial Expression Recognition Based on Convolution Neural Network (컨볼루션 신경망 기반 표정인식 스마트 미러)

  • Choi, Sung Hwan;Yu, Yun Seop
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.05a
    • /
    • pp.200-203
    • /
    • 2021
  • This paper introduces a smart mirror technology that recognizes a person's facial expressions through image classification among several artificial intelligence technologies and presents them in a mirror. 5 types of facial expression images are trained through artificial intelligence. When someone looks at the smart mirror, the mirror recognizes my expression and shows the recognized result in the mirror. The dataset fer2013 provided by kaggle used the faces of several people to be separated by facial expressions. For image classification, the network structure is trained using convolution neural network (CNN). The face is recognized and presented on the screen in the smart mirror with the embedded board such as Raspberry Pi4.

  • PDF

A Study on Building a Test Bed for Smart Manufacturing Technology (스마트 제조기술을 위한 테스트베드 구축에 관한 연구)

  • Cho, Choon-Nam
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.34 no.6
    • /
    • pp.475-479
    • /
    • 2021
  • There are many difficulties in the applications of smart manufacturing technology in the era of the 4th industrial revolution. In this paper, a test bed was built to aim for acquiring smart manufacturing technology, and the test bed was designed to acquire basic technologies necessary for PLC (Programmable Logic Controller), HMI, Internet of Things (IoT), artificial intelligence (AI) and big data. By building a vehicle maintenance lift that can be easily accessed by the general public, PLC control technology and HMI drawing technology can be acquired, and by using cloud services, workers can respond to emergencies and alarms regardless of time and space. In addition, by managing and monitoring data for smart manufacturing, it is possible to acquire basic technologies necessary for embedded systems, the Internet of Things, artificial intelligence, and big data. It is expected that the improvement of smart manufacturing technology capability according to the results of this study will contribute to the effect of creating added value according to the applications of smart manufacturing technology in the future.