• Title/Summary/Keyword: Rare-Earth ion

Search Result 82, Processing Time 0.024 seconds

Reaction Route to the Crystallization of Copper Oxides

  • Chen, Kunfeng;Xue, Dongfeng
    • Applied Science and Convergence Technology
    • /
    • v.23 no.1
    • /
    • pp.14-26
    • /
    • 2014
  • Copper is an important component from coin metal to electronic wire, integrated circuit, and to lithium battery. Copper oxides, mainly including $Cu_2O$ and CuO, are important semiconductors for the wide applications in solar cell, catalysis, lithium-ion battery, and sensor. Due to their low cost, low toxicity, and easy synthesis, copper oxides have received much research interest in recent year. Herein, we review the crystallization of copper oxides by designing various chemical reaction routes, for example, the synthesis of $Cu_2O$ by reduction route, the oxidation of copper to $Cu_2O$ or CuO, the chemical transformation of $Cu_2O$ to CuO, the chemical precipitation of CuO. In the designed reaction system, ligands, pH, inorganic ions, temperature were used to control both chemical reactions and the crystallization processes, which finally determined the phases, morphologies and sizes of copper oxides. Furthermore, copper oxides with different structures as electrode materials for lithium-ion batteries were also reviewed. This review presents a simple route to study the reaction-crystallization-performance relationship of Cu-based materials, which can be extended to other inorganic oxides.

Separation and Recovery of Rare Earths by Ion Exchange Chromatography (이온교환 크로마토그래피에 의한 희토류 원소의 분리와 회수)

  • Cha, Ki Won;Park, Kwang Won;Hong, Sung Wook
    • Journal of the Korean Chemical Society
    • /
    • v.41 no.11
    • /
    • pp.612-638
    • /
    • 1997
  • The methods of separation and recovery of rare earth elements in monazite sand have been studied by the ion exchange chromatography. Both of cation and anion exchange resin were used as ion exchange resins and the solutions of EDTA, DTPA, IMDA and Ln-EDTA were used as eluents. The H+, Zn2+, Fe3+, Al3+, Cu2+, and NH4+ forms of cation exchange resin were used as retaining ions. Ln-EDTA solution was loaded on the EDTA form of anion exchange resin and separated. The Ln-EDTA solution was also used as an eluent for a selective separation of one element from the rare earth mixture solution. The size effects of resin column, the elution mechanism for the various elution types and the separation of a large amount of rare earths were studied.

  • PDF

Optical Characteristices of Nd:glass by Using the Judd-Ofelt Method (Judd-Ofelt 방법을 이용한 Nd:glass의 광학적 특성)

  • Choi, Cheol-Ho;You, Sun-Jong;Kim, Hea-Jeong;Kim, Jeong-Ho;Park, Yong-Pil
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.07a
    • /
    • pp.216-218
    • /
    • 2003
  • The Judd-Ofelt theory is becoming basis that induced of ligand field of electric dipole transitions of between 4f electic states. It is developed for the rare earth ions through judd and of ofelt. This theory be applicate success to the raer earth ions in solid, liquid and gas state. This paper reports a optical characteristices of Nd:glass by using the Judd-Ofelt Method.

  • PDF

A study on the separation and determination of the rare earth Elements by the AG® 50W-X8 cation exchange resin (AG® 50W-X8 양이온교환수지를 이용한 희토류원소의 분리와 분석에 관한 연구)

  • Lee, Jung Sook;Choi, Beom Suk
    • Analytical Science and Technology
    • /
    • v.21 no.4
    • /
    • pp.272-278
    • /
    • 2008
  • Methods to separate 14 rare earth elements (REEs) and yttrium by the $AG^{(R)}$ 50W-X8 cation exchange resin, and to determine REEs by inductively coupled plasma atomic emission spectrophotometry (ICP-AES) were described. Ion exchange capacities of REEs on the resin were so high that the REEs were quantitatively ion exchanged under the flow rate of 0.3~1.0 mL/min at pH 1~6. The breakthrough capacity curve of the REEs showed that ion exchange capacities of light REEs (Cerium group) were greater than that of the heavy REEs (Yttrium group). When $200{\mu}g$ of each REEs was ion exchanged on 100 mg of resin, most of the heavy REEs were quantitatively desorbed with 10 mL of 2.0 M of $HNO_3$, while most of the light REEs with 30 mL. The method was applied to the monazite sample. The REEs could be separated from matrix, since ion exchange capacities of matrix ions of Ca, Ti, Mg, Mn were much lower than that of the REEs. However the relative standard deviations of the analytical results by the present method were not improved, as high as 1~5%.

Study of Synthesis and Property of Eu-PEG Phase Change Luminescent Materials (Eu-PEG로 구성된 상변환 발광재료의 합성 및 물성에 대한 연구)

  • Gu, Xiao-Hua;Xi, Peng;Shen, Xin-Yuan;Cheng, Bo-Wen
    • Polymer(Korea)
    • /
    • v.32 no.4
    • /
    • pp.305-312
    • /
    • 2008
  • A novel TPC-PEG-TPC with active end-groups was obtained from the end-groups of polyethylene glycol (PEG) modified by terephthaloyl chloride (TPC). These active end-groups can link up with a rare earth ion, which is a luminescent center of a rare earth fluorescent complex. Complexes of Eu-PEG with novel ligands (TPC-PEG-PTC) were synthesized by the coordination of the active reactant (as the first ligand) and phenanthroline (as the second ligand) with $Eu^{3+}$.IR, $^1H$-NMR, element analysis, DSC, WAXD, fluorescent spectroscopy, TGA, and SEM were used to characterize the structure and properties of these complexes. The results showed that this type of complex is a heat storage material with the phase change character of polyethylene glycol (PEG) and the luminescent properties of europium. There was no thermal decomposition of the complex of Eu-PEG until $300^{\circ}C$. SEM showed that the complex of Eu-PEG can be dispersed in PE.

Studies on DC Polarograms of Some Rare Earth Elements (몇가지 희토류원소의 DC 폴라로그램에 관한 연구)

  • Cha, Ki-Won;Kim, Jea-Kyun;Kim, Sung-Il;Kim, Kyung-Whan
    • Analytical Science and Technology
    • /
    • v.16 no.3
    • /
    • pp.206-211
    • /
    • 2003
  • The DC polarograms of some rare earth elements have been investigated in various pH solution and electrolytes. Samarium ion has two well-defined reduction waves at -1.75 V and -1.95 V in 0.1 M NaCl solution and those are a diffusion controlled in nature. Europium and ytterbium ions give also two step reduction waves at -0.75 V and -1.95 V for europium and -1.45 V and -2.00 V for ytterium in $(C_2H_5)_4NCl$ solution. On the other hand, lantanium and neodium ions show a single reduction wave at -1.75 V. The differences of half wave potentials between europium, ytterium and samarium ions make it possible to determine each ions in the mixed solution sponteniously. In case of europium ion, the stability constants for the complexs of $Eu^{3+}$-EDTA and $Eu^{3+}$-DTPA are evaluated.

Effect of Single and Dual Doping of Rare Earth Metal Ce and Nd Elements on Electrochemical Properties of LiNi0.83 Co0.11Mn0.06O2Cathode Lithium-ion Battery Material (리튬이온전지용 양극활물질 LiNi0.83 Co0.11Mn0.06O2의 전기화학적 특성에 미치는 Ce와 Nd 희토류 금속의 단독 혹은 이중 도핑효과)

  • Kim, Yoo-Young;Ha, Jong-Keun;Cho, Kwon-Koo
    • Journal of Powder Materials
    • /
    • v.26 no.1
    • /
    • pp.49-57
    • /
    • 2019
  • Layered $LiNi_{0.83}Co_{0.11}Mn_{0.06}O_2$ cathode materials single- and dual-doped by the rare-earth elements Ce and Nd are successfully fabricated by using a coprecipitation-assisted solid-phase method. For comparison purposes, non-doping pristine $LiNi_{0.83}Co_{0.11}Mn_{0.06}O_2$ cathode material is also prepared using the same method. The crystal structure, morphology, and electrochemical performances are characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive spectrometer (EDS) mapping, and electrochemical techniques. The XRD data demonstrates that all prepared samples maintain a typical ${\alpha}-NaFeO_2$-layered structure with the R-3m space group, and that the doped samples with Ce and/or Nd have lower cation mixing than that of pristine samples without doping. The results of SEM and EDS show that doped elements are uniformly distributed in all samples. The electrochemical performances of all doped samples are better than those of pristine samples without doping. In addition, the Ce/Nd dual-doped cathode material shows the best cycling performance and the least capacity loss. At a 10 C-rate, the electrodes of Ce/Nd dual-doped cathode material exhibit good capacity retention of 72.7, 58.5, and 45.2% after 100, 200, and 300 cycles, respectively, compared to those of pristine samples without doping (24.4, 11.1, and 8.0%).

The Separation and Determination of Rare Earth Elements by Ion-Association Chromatography (희토류 원소의 분리 및 정량을 위한 이온회합 크로마토그래피)

  • Lee, Seung Hwa;Lee, Cheol;Jeong, Koo Soon
    • Journal of the Korean Chemical Society
    • /
    • v.34 no.1
    • /
    • pp.69-75
    • /
    • 1990
  • An ion-association chromatography was applied for the separation and determination of individual rare earth elements (REE) contained in mineral monazite. Prior to the determination, the group separation of REE was achieved by a cation exchange column of Dowex 5OW-X8 resin. The quantitative recovery of REE by the resin column, free from coexisting elements in monazite, was confirmed with radioactive tracers as well as with ICP-MS. Individual REE at ppm level was separated on reversed-phase column ($\mu$-Bondapak $C_{18}$) using gradient elution from 0.05 to 0.3 M $\alpha$-hydroxyisobutyric acid at pH 4.6. The individual REE was detected at 546 nm following post-column reaction with PAR (4-(2-pyridylazo)-resorcinol monosodium salt).

  • PDF

Electrical Property of $BaTiO_3$ Ceramics(II) ($BaTiO_3$ 세라믹의 전기적성질(II))

  • 윤기현;송효일;윤상옥;이형복
    • Journal of the Korean Ceramic Society
    • /
    • v.18 no.2
    • /
    • pp.75-78
    • /
    • 1981
  • The electrical conductivity of $(M_2O_3)_x (BaTiO_3)_{1-x}$ has been measured over the temperature range of 30 to 27$0^{\circ}C$. The substitution of rare earth oxide such as $La_2O_3$, $Nd_2O_3$, or $Dy_2O_3$ can be represented by $M_2O_3$. The additional mole fraction of the rare earth oxide is ranged over 0.0015 to 0.0030. The electrical conductivity exhibits an anomalous decrease near the tetragonal to cubic transition about 12$0^{\circ}C$. The decrease in the electrical conductivity is observed at the higher impurity concentrations owing to space charge layer. The increase in the electrical conductivity is observed as the impurity ion is varied from $La^{+3}$$Nd^{+3}$ to $Dy^{+3}$, due to overlap of 4f electrons of the inner shell.

  • PDF

Epitaxial Growth of Rare-earth Ion Doped $CaF_2$ layers by MBE

  • Ko, J.N.;Chen, Y.;Fukuda, T.
    • Proceedings of the Korea Association of Crystal Growth Conference
    • /
    • 1998.09a
    • /
    • pp.3-7
    • /
    • 1998
  • The rare-earth ions (R3+, R=Nd, Er) doped CaF2 layers have been grown on CaF2(111) substrate by molecular beam epitaxy. The epitaxial relationship and the crystallinity of CaF2:R3+ layers depending on the concentration of R3+ were studied by reflection high-energy electron diffraction (RHEED). In aspect of application as buffer layer in semiconductor-related hybrid structure, the lattice displacement between CaF2:R3+ layers and CaF2(111) substrate was investigated by X-ray rocking curve analysis.

  • PDF