• Title/Summary/Keyword: Rare earth material

Search Result 152, Processing Time 0.025 seconds

Effect of mixed alkaline earth doping on phosphorence properties of $BaAl_2O_4:Eu^{2+}$, $Dy^{3+}$

  • Singh, B.K.;Ryu, R.J.
    • Proceedings of the Korean Society Of Semiconductor Equipment Technology
    • /
    • 2006.10a
    • /
    • pp.22-25
    • /
    • 2006
  • Long lasting phosphor materials are in great demand for their applications in the area of light emitting diodes (LEDs), commercial displays and warning signals. After glow longevity, brightness, photo-resistance and chemical and environment stability are most important qualities that are desired for these materials. Alumina as host lattice with various rare earth elements has been found to be good at the same time inexpensive material for the synthesis of the phosphor materials. This communication explored the effect of mixed rare earth metal on the luminescence properties of these materials for the first time. Various permutations and combinations of $Sr^{2+}$ and $Ba^{2+}$ have been investigated in order to achieve robust and high luminescence characteristics in the tailored phosphor materials.

  • PDF

Effects of Rare Earth Metal Addition on the Cavitation Erosion-Corrosion Resistance of Super Duplex Stainless Steels

  • 심성익;박용수;김순태;송치복
    • Transactions of Materials Processing
    • /
    • v.8 no.3
    • /
    • pp.301-301
    • /
    • 1999
  • Austenitic stainless steels such as AISI 316L have been used in equipment in which fluid flows at high speeds which can induce cavitation erosion on metallic surfaces due to the collapse of cavities, where the collapse is caused by the sudden change of local pressure within the liquid. Usually AISI 316L is susceptible to cavitation erosion. This research focuses on developing a better material to replace the AISI 316L used in equipment with high speed fluid flow, such as impellers. The effects of Rare Earth Metal (REM) additions on the cavitation erosion-corrosion resistance of duplex stainless steels were studied using metallographic examination, the potentiodynamic anodic polarization test, the tensile test, the X-ray diffraction test and the ultrasonic cavitation erosion test. The experimental alloys were found to have superior mechanical properties due to interstitial solid solution strengthening, by adding high nitrogen (0,4%), as well as by the refinement of phases and grains induced by fine REM oxides and oxy-sulfides. Corrosion resistance decreases in a gentle gradient as the REM content increases. However, REM containing alloys show superior corrosion resistance compared with that of other commercial alloys (SAF 2507, AISI 316L). Owing to their excellent mechanical properties and corrosion resistance, the alloys containing REM have high cavitation erosion-corrosion resistance.

Strong Correlation Effect by the Rare Earth Substitution on Thermoelectric Material Bi2Te3 ; in GGA+U Approach

  • Quang, Tran Van;Kim, Miyoung
    • Proceedings of the Korean Magnestics Society Conference
    • /
    • 2013.05a
    • /
    • pp.19-20
    • /
    • 2013
  • Thermoelectic properties of the typical thermoelectric host materials, the tellurides and selenides, are known to be noticeably changed by their volume change due to the strain [1]. In the bismuth telluride ($Bi_2Te_3$) crystal, a substitution of rare-earth element by replacing one of the Bi atoms may cause the change of the lattice parameters while remaining the rhombohedral structure of the host material. Using the first-principles approach by the precise full potential linearized augmented plane wave (FLAPW) method [2], we investigated the Ce substitution effect on the thermoelectric transport coefficients for the bismuth telluride, employing Boltzmann's equation in a constant relaxation-time approach fed with the FLAPW wave-functions within the rigid band approximation. Depending on the real process of re-arrangement of atoms in the cell to reach the equilibrium state, $CeBiTe_3$ was found to manifest a metal or a narrow bandgap semiconductor. This feature along with the strong correlation effect originated by the 4f states of Ce affect significantly on the thermoelectric properties. We showed that the position of the strongly localized f-states in energy scale (Fig. 1, f-states are shaded) was found to alter critically the transport properties in this material suggesting an opportunity to improve the thermoelectric efficiency by tuning the external strain which may changing the location of the f-sates.

  • PDF

Humidity Dependence Removal Technology in Oxide Semiconductor Gas Sensors (산화물 반도체 가스 센서의 습도 의존성 제거 기술)

  • Jiho Park;Ji-Wook Yoon
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.37 no.4
    • /
    • pp.347-357
    • /
    • 2024
  • Oxide semiconductor gas sensors are widely used for detecting toxic, explosive, and flammable gases due to their simple structure, cost-effectiveness, and potential integration into compact devices. However, their reliable gas detection is hindered by a longstanding issue known as humidity dependence, wherein the sensor resistance and gas response change significantly in the presence of moisture. This problem has persisted since the inception of oxide semiconductor gas sensors in the 1960s. This paper explores the root causes of humidity dependence in oxide semiconductor gas sensors and presents strategies to address this challenge. Mitigation strategies include functionalizing the gas-sensing material with noble metal/transition metal oxides and rare-earth/rare-earth oxides, as well as implementing a moisture barrier layer to prevent moisture diffusion into the gas-sensing film. Developing oxide semiconductor gas sensors immune to humidity dependence is expected to yield substantial socioeconomic benefits by enabling medical diagnosis, food quality assessment, environmental monitoring, and sensor network establishment.

Price Rally of Rare Earth, Material for High-Tech Products (첨단산업 부품소재인 희토류의 가격파동에 대해서)

  • Choi, Pan-Kyu
    • Journal of the Korean Magnetics Society
    • /
    • v.21 no.3
    • /
    • pp.116-119
    • /
    • 2011
  • A Chinese shipping boat collided with two Japanese coast guard boats in waters near the disputed Senkaku islands (known as Diaoyudao in China) in the East China Sea on September 7th last year. The boat was held and captain was arrested by Japanese Government. The incident soon turned into a big political and economic conflict between the two countries. Japan's intention was to show her tight control over Senkaku, whereas China's intention was to make it a disputed territory in the eyes of international politics. While the conflict was going on, a top-rank bilateral talk between the two countries was suspended, boycott of Japanese goods was suggested, numerous rallies were held in both countries. This situation lasted for several months until China used an extreme card of "Cutting Supply of Rare Earth to Japan". Under this pressure, Japan instantly released the captain and closed the case. Over this incident, public noticed the importance of rare earth and its impact on the global economy. Since then, the policy of Chinese Government for the rare earth has created more confusion and turmoil in the global market. The purpose of this article is to overview the price rally and future of the rare earth.

The Defect Characterization of Rare-earth Intensifying Screen Material by Doppler Broadening Positron Annihilation Spectrometer (도플러 넓어짐 스펙트럼을 이용한 희토류 증감지 결함 특성)

  • Lee C. Y.;Kim C. G.;Song G. Y.;Kim J. H.
    • Korean Journal of Materials Research
    • /
    • v.15 no.6
    • /
    • pp.370-374
    • /
    • 2005
  • Doppler broadening spectrometer for positron annihilation experiment(DBPAS) has been used to characterize nano size defect structures in materials. DBPAS measures the concentration, spatial distribution, and size of open volume defects in the rare-earth intensifying screen materials. The screens were exposed by X-ray varying the exposed doses from 3, 6, 9, and 12 Gy with 6 W and 15 MV respectively and also irradiated by 37 MeV proton beams ranging from 0 to $10^{12}ptls$. The S parameter values increased as the exposed time and the energies increased, which indicated the defects were generated more. The S parameters of the samples with X-rays varied from 0.5098 to 0.5108, on the other hand, as proton beams varied from 0.4804 to 0.4821.

Adsorption of Rare Earth Metal Ion on N-Phenylaza-15-Crown-5 Synthetic Resin with Styrene Hazardous Material

  • Kim, Se-Bong;Kim, Joon-Tae
    • Journal of Integrative Natural Science
    • /
    • v.7 no.2
    • /
    • pp.130-137
    • /
    • 2014
  • Resins were synthesized by mixing N-phenylaza-15-crown-5 macrocyclic ligand attached to styrene (2th petroleum in 4th class hazardous materials) divinylbenzene (DVB) copolymer with crosslink of 1%, 2%, 6%, and 12% by substitution reaction. The synthesis of these resins was confirmed by content of chlorine, element analysis, thermo gravimetric analysis (TGA), surface area, and IR-spectroscopy. The effects of pH, equilibrium arrival time, dielectric constant of solvent and crosslink on adsorption of metal ions by the synthetic resin adsorbent were investigated. The metal ions were showed fast adsorption on the resins above pH 4. The optimum equilibrium time for adsorption of metallic ions was about two hours. The adsorption selectivity determined in ethanol was in increasing order uranium (VI) > zinc (II) > europium (III) ions. The uranium ion adsorbed in the order of 1%, 2%, 6%, and 12% crosslink resin and adsorption of resin decreased in proportion to the order of dielectric constant of solvents.

Microstructure and Properties of Mg-RE-Zn Alloys for High Conductivity Parts (고전도성 부품용 Mg-RE-Zn계 합금의 미세조직 및 특성)

  • Kim, Jeong-Min;Kim, Nam-Hoon
    • Journal of Korea Foundry Society
    • /
    • v.34 no.5
    • /
    • pp.151-155
    • /
    • 2014
  • The relatively low conductivity of conventional Mg-Al alloys often limits their areas of application. Therefore, several attempts to develop new high-conductivity magnesium alloys have been made recently. In this research, A Ce-rich rare-earth (RE)material and zinc were added to magnesium which contained no aluminum. As the RE and Zn content were increased, both the hardness and tensile strength were gradually increased, despite the fact that the electrical conductivity decreased slightly. The effects of an aging treatment on the conductivity and mechanical properties of Mg-RE-Zn alloys were also investigated. The electrical conductivity did not change according to the heat treatment conditions; however, the mechanical properties could be enhanced by proper aging heat treatments.