• Title/Summary/Keyword: Raptor codes

Search Result 8, Processing Time 0.018 seconds

Formulation of Joint Iterative Decoding for Raptor Codes

  • Zhang, Meixiang;Kim, Sooyoung;Kim, Won-Yong;Cho, Yong-Hoon
    • Journal of Korea Multimedia Society
    • /
    • v.17 no.8
    • /
    • pp.961-967
    • /
    • 2014
  • Raptor codes are a class of rateless codes originally designed for binary erasure channels. This paper presents a compact set of mathematical expressions for iterative soft decoding of raptor codes. In addition, an early termination scheme is employed, and it is embedded in a single algorithm with the formula. In the proposed algorithm, the performance is enhanced by adopting iterative decoding, both in each inner and outer code and in the concatenated code itself between the inner and outer codes. At the same time, the complexity is reduced by applying an efficient early termination scheme. Simulation results show that our proposed method can achieve better performance with reduced decoding complexity compared to the conventional schemes.

Effective identification of dominant fully absorbing sets for Raptor-like LDPC codes

  • Woncheol Cho;Chanho Yoon;Kapseok Chang;Young-Jo Ko
    • ETRI Journal
    • /
    • v.45 no.1
    • /
    • pp.7-17
    • /
    • 2023
  • The error-rate floor of low-density parity-check (LDPC) codes is attributed to the trapping sets of their Tanner graphs. Among them, fully absorbing sets dominantly affect the error-rate performance, especially for short blocklengths. Efficient methods to identify the dominant trapping sets of LDPC codes were thoroughly researched as exhaustively searching them is NP-hard. However, the existing methods are ineffective for Raptor-like LDPC codes, which have many types of trapping sets. An effective method to identify dominant fully absorbing sets of Raptor-like LDPC codes is proposed. The search space of the proposed algorithm is optimized into the Tanner subgraphs of the codes to afford time-efficiency and search-effectiveness. For 5G New Radio (NR) base graph (BG) 2 LDPC codes for short blocklengths, the proposed algorithm finds more dominant fully absorbing sets within one seventh of the computation time of the existing search algorithm, and its search-effectiveness is verified using importance sampling. The proposed method is also applied to 5G NR BG1 LDPC code and Advanced Television Systems Committee 3.0 type A LDPC code for large blocklengths.

Raptor Codes-based Screen Mirroring for Energy Efficiency (에너지 효율성을 고려한 랩터 코드 기반의 스크린 미러링)

  • Go, Yunmin;Song, Hwangjun
    • KIISE Transactions on Computing Practices
    • /
    • v.23 no.2
    • /
    • pp.134-139
    • /
    • 2017
  • The existing screen mirroring systems are vulnerable to packet loss and inefficient for mobile devices with limited energy capacity. To overcome these problems, we propose a packet loss robust and energy efficient screen mirroring system for mobile device. The proposed system employs systematic Raptor codes for a forward error correction method to mitigate the video quality degradation that is caused by packet loss over wireless networks. For the mobile device energy saving, the proposed system shapes the screen mirroring traffic and adjusts the Raptor encoding parameters. In this paper, the proposed system is fully implemented on single board computers and is examined in a real Wi-Fi Direct network.

Optimization of Unequal Error Protection Rateless Codes for Multimedia Multicasting

  • Cao, Yu;Blostein, Steven D.;Chan, Wai-Yip
    • Journal of Communications and Networks
    • /
    • v.17 no.3
    • /
    • pp.221-230
    • /
    • 2015
  • Rateless codes have been shown to be able to provide greater flexibility and efficiency than fixed-rate codes for multicast applications. In the following, we optimize rateless codes for unequal error protection (UEP) for multimedia multicasting to a set of heterogeneous users. The proposed designs have the objectives of providing either guaranteed or best-effort quality of service (QoS). A randomly interleaved rateless encoder is proposed whereby users only need to decode symbols up to their own QoS level. The proposed coder is optimized based on measured transmission properties of standardized raptor codes over wireless channels. It is shown that a guaranteed QoS problem formulation can be transformed into a convex optimization problem, yielding a globally optimal solution. Numerical results demonstrate that the proposed optimized random interleaved UEP rateless coder's performance compares favorably with that of other recently proposed UEP rateless codes.

RCDP: Raptor-Based Content Delivery Protocol for Unicast Communication in Wireless Networks for ITS

  • Baguena, Miguel;Toh, C.K.;Calafate, Carlos T.;Cano, Juan-Carlos;Manzoni, Pietro
    • Journal of Communications and Networks
    • /
    • v.15 no.2
    • /
    • pp.198-206
    • /
    • 2013
  • Recent advances in forward error correction (FEC) coding techniques were focused on addressing the challenges of multicast and broadcast delivery. However, FEC approaches can also be used for unicast content delivery in order to solve transmission control protocol issues found in wireless networks. In this paper, we exploit the error resilient properties of Raptor codes by proposing Raptor-based content delivery protocol (RCDP) - a novel solution for reliable and bidirectional unicast communication in lossy links that can improve content delivery in situations where the wireless network is the bottleneck. RCDP has been designed, validated, optimized, and its performance has been analyzed in terms of throughput and resource efficiency. Experimental results show that RCDP is a highly efficient solution for environments characterized by high delays and packet losses making it very suitable for intelligent transport system oriented applications since it achieves significant performance improvements when compared to traditional transport layer protocols.

Hybrid ARQ for LDPC-coded Systems (LDPC 부호에 기반한 Hybrid ARQ 기법)

  • Ahn, Seok-Ki;Myung, Se-Ho;Yang, Kyeong-Cheol
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.12C
    • /
    • pp.991-996
    • /
    • 2008
  • In this paper, we propose an LDPC-coded hybrid ARQ system using incremental redundancy and retransmission of a part of the transmitted packets. We also present a simple criterion for choosing two methods to support a desired throughput efficiently. Furthermore, we show that the throughput performance can be improved when multi-edge type LDPC codes with the structure of Raptor codes are employed for a hybrid ARQ scheme.

Redundancy Minimizing Techniques for Robust Transmission in Wireless Networks

  • Kacewicz, Anna;Wicker, Stephen B.
    • Journal of Communications and Networks
    • /
    • v.11 no.6
    • /
    • pp.564-573
    • /
    • 2009
  • In this paper, we consider a wireless multiple path network in which a transmitting node would like to send a message to the receiving node with a certain probability of success. These two nodes are separated by N erasure paths, and we devise two algorithms to determine minimum redundancy and optimal symbol allocation for this setup. We discuss the case with N = 3 and then extend the case to an arbitrary number of paths. One of the algorithms minimum redundancy algorithm in exponential time is shown to be optimal in several cases, but has exponential running time. The other algorithm, minimum redundancy algorithm in polynomial time, is sub-optimal but has polynomial worstcase running time. These algorithms are based off the theory of maximum-distance separable codes. We apply the MRAET algorithm on maximum-distance separable, Luby transform, and Raptor codes and compare their performance.

Video Transmission Technique based on Deep Neural Networks for Optimizing Image Quality and Transmission Efficiency (영상 품질 및 전송효율 최적화를 위한 심층신경망 기반 영상전송기법)

  • Lee, Jong Man;Kim, Ki Hun;Park, Hyun;Choi, Jeung Won;Kim, Kyung Woo;Bae, Sung Ho
    • Journal of Broadcast Engineering
    • /
    • v.25 no.4
    • /
    • pp.609-619
    • /
    • 2020
  • In accordance with a demand for high quality video streaming, it needs high data rate in limited bandwidth and more traffic congestion occurs. In particular, when providing real time video service, packet loss rate and bit error probability increase significantly. To solve these problems, a raptor code, which is one of FEC(Forward Error Correction) techniques, is pervasively used in the application layers as a method for improving real-time service quality. In this paper, we propose a method of determining image transmission parameters based on various deep neural networks to increase transmission efficiency at a similar level of image quality by using raptor codes. The proposed neural network uses the packet loss rate, video encoding rate and data rate as inputs, and outputs raptor FEC parameters and packet sizes. The results of the proposed method present that the throughput is 1.2% higher than that of the existing multimedia transmission technique by optimizing the transmission efficiency at a PSNR(Peak Signal-to-Noise Ratio) level similar to that of the existing technique.