• Title/Summary/Keyword: Rapidly-exploring Random Tree (RRT)

Search Result 18, Processing Time 0.02 seconds

Path Planning and Obstacle Avoidance Algorithm of an Autonomous Traveling Robot Using the RRT and the SPP Path Smoothing (RRT와 SPP 경로 평활화를 이용한 자동주행 로봇의 경로 계획 및 장애물 회피 알고리즘)

  • Park, Yeong-Sang;Lee, Young-Sam
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.22 no.3
    • /
    • pp.217-225
    • /
    • 2016
  • In this paper, we propose an improved path planning method and obstacle avoidance algorithm for two-wheel mobile robots, which can be effectively applied in an environment where obstacles can be represented by circles. Firstly, we briefly introduce the rapidly exploring random tree (RRT) and single polar polynomial (SPP) algorithm. Secondly, we present additional two methods for applying our proposed method. Thirdly, we propose a global path planning, smoothing and obstacle avoidance method that combines the RRT and SPP algorithms. Finally, we present a simulation using our proposed method and check the feasibility. This shows that proposed method is better than existing methods in terms of the optimality of the trajectory and the satisfaction of the kinematic constraints.

Generating Test Cases of Stateflow Model Using Extended RRT Method Based on Test Goal (테스트 목표 기반의 향상된 RRT 확장 기법을 이용한 Stateflow 모델 테스트 케이스 생성)

  • Park, Hyeon Sang;Choi, Kyung Hee;Chung, Ki Hyun
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.2 no.11
    • /
    • pp.765-778
    • /
    • 2013
  • This paper proposes a test case generation method for Stateflow model using the extended RRT method. The RRT method which has been popularly used for planning paths for complex systems also shows a good performance for test case generation. However, it does not consider the test coverage which is important for test case generation. The proposed extension method hires the concept of test goal achievement to increase test coverage and drives RRT extension in the direction that increases the goal achievement. Considering the concept, a RRT distance metric, random node generation method and modified RRT extension algorithm are proposed. The effectiveness of proposed algorithm is compared with that of the typical RRT algorithm through the experiment using the practical automotive ECUs.

Path Planning of the Low Altitude Flight Unmanned Aerial Vehicle for the Neutralization of the Enemy Firepower (대화력전 임무수행을 위한 저고도 비행 무인공격기의 경로계획)

  • Yang, Kwang-Jin;Kim, Si-Tai;Jung, Dae-Han
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.15 no.4
    • /
    • pp.424-434
    • /
    • 2012
  • This paper presents a path planning algorithm of the unmanned aerial vehicle for the neutralization of the enemy firepower. The long range firepower of the ememy is usually located at the rear side of the mountain which is difficult to bomb. The path planner not only consider the differential constraints of the Unmanned Aerial Vehicle (UAV) but also consider the final approaching angle constraint. This problem is easily solved by incorporating the analytical upper bounded continuous curvature path smoothing algorithm into the Rapidly Exploring Random Tree (RRT) planner. The proposed algorithm can build a feasible path satisfying the kinematic constraints of the UAV on the fly. In addition, the curvatures of the path are continuous over the whole path. Simulation results show that the proposed algorithm can generate a feasible path of the UAV for the bombing mission regardless of the posture of the tunnel.

Improvement of Online Motion Planning based on RRT* by Modification of the Sampling Method (샘플링 기법의 보완을 통한 RRT* 기반 온라인 이동 계획의 성능 개선)

  • Lee, Hee Beom;Kwak, HwyKuen;Kim, JoonWon;Lee, ChoonWoo;Kim, H.Jin
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.22 no.3
    • /
    • pp.192-198
    • /
    • 2016
  • Motion planning problem is still one of the important issues in robotic applications. In many real-time motion planning problems, it is advisable to find a feasible solution quickly and improve the found solution toward the optimal one before the previously-arranged motion plan ends. For such reasons, sampling-based approaches are becoming popular for real-time application. Especially the use of a rapidly exploring random $tree^*$ ($RRT^*$) algorithm is attractive in real-time application, because it is possible to approach an optimal solution by iterating itself. This paper presents a modified version of informed $RRT^*$ which is an extended version of $RRT^*$ to increase the rate of convergence to optimal solution by improving the sampling method of $RRT^*$. In online motion planning, the robot plans a path while simultaneously moving along the planned path. Therefore, the part of the path near the robot is less likely to be sampled extensively. For a better solution in online motion planning, we modified the sampling method of informed $RRT^*$ by combining with the sampling method to improve the path nearby robot. With comparison among basic $RRT^*$, informed $RRT^*$ and the proposed $RRT^*$ in online motion planning, the proposed $RRT^*$ showed the best result by representing the closest solution to optimum.

Real-time Path Replanning for Unmanned Aerial Vehicles: Considering Environmental Changes using RRT* and LOSPO (무인 항공기를 위한 실시간 경로 재계획 기법: RRT*와 LOSPO를 활용한 환경 변화 고려)

  • Jung Woo An;Ji Won Woo;Hyeon Seop Kim;Sang Yun Park;Gyeon Rae Nam
    • Journal of Advanced Navigation Technology
    • /
    • v.27 no.4
    • /
    • pp.365-373
    • /
    • 2023
  • Unmanned aerial vehicles are widely used in various fields, and real-time path replanning is a critical factor in enhancing the safety and efficiency of these devices. In this paper, we propose a real-time path replanning technique based on RRT* and LOSPO. The proposed technique first generates an initial path using the RRT* algorithm and then optimizes the path using LOSPO. Additionally, the optimized path can be converted into a trajectory that considers actual time and the dynamic limits of the aircraft. In this process, environmental changes and collision risks are detected in real-time, and the path is replanned as needed to maintain safe operation. This method has been verified through simulation-based experiments. The results of this paper make a significant contribution to the research on real-time path replanning for UAVs, and by applying this technique to various situations, the safety and efficiency of UAVs can be improved.

The Pathplanning of Navigation Algorithm using Dynamic Window Approach and Dijkstra (동적창과 Dijkstra 알고리즘을 이용한 항법 알고리즘에서 경로 설정)

  • Kim, Jae Joon;Jee, Gui-In
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.10a
    • /
    • pp.94-96
    • /
    • 2021
  • In this paper, we develop a new navigation algorithm for industrial mobile robots to arrive at the destination in unknown environment. To achieve this, we suggest a navigation algorithm that combines Dynamic Window Approach (DWA) and Dijkstra path planning algorithm. We compare Local Dynamic Window Approach (LDWA), Global Dynamic Window Approach(GDWA), Rapidly-exploring Random Tree (RRT) Algorithm. The navigation algorithm using Dijkstra algorithm combined with LDWA and GDWA makes mobile robots to reach the destination. and obstacles faced during the path planning process of LDWA and GDWA. Then, we compare on time taken to arrive at the destination, obstacle avoidance and computation complexity of each algorithm. To overcome the limitation, we seek ways to use the optimized navigation algorithm for industrial use.

  • PDF

A Comparative Analysis of Path Planning and Tracking Performance According to the Consideration of Vehicle's Constraints in Automated Parking Situations (자율주차 상황에서 차량 구속 조건 고려에 따른 경로 계획 및 추종 성능의 비교 분석)

  • Kim, Minsoo;Ahn, Joonwoo;Kim, Minsung;Shin, Minyong;Park, Jaeheung
    • The Journal of Korea Robotics Society
    • /
    • v.16 no.3
    • /
    • pp.250-259
    • /
    • 2021
  • Path planning is one of the important technologies for automated parking. It requires to plan a collision-free path considering the vehicle's kinematic constraints such as minimum turning radius or steering velocity. In a complex parking lot, Rapidly-exploring Random Tree* (RRT*) can be used for planning a parking path, and Reeds-Shepp or Hybrid Curvature can be applied as a tree-extension method to consider the vehicle's constraints. In this case, each of these methods may affect the computation time of planning the parking path, path-tracking error, and parking success rate. Therefore, in this study, we conduct comparative analysis of two tree-extension functions: Reeds-Shepp (RS) and Hybrid Curvature (HC), and show that HC is a more appropriate tree-extension function for parking path planning. The differences between the two functions are introduced, and their performances are compared by applying them with RRT*. They are tested at various parking scenarios in simulation, and their advantages and disadvantages are discussed by computation time, cross-track error while tracking the path, parking success rate, and alignment error at the target parking spot. These results show that HC generates the parking path that an autonomous vehicle can track without collisions and HC allows the vehicle to park with lower alignment error than those of RS.

A Study on the Techniques of Path Planning and Measure of Effectiveness for the SEAD Mission of an UAV (무인기의 SEAD 임무 수행을 위한 임무 경로 생성 및 효과도 산출 기법 연구)

  • Woo, Ji Won;Park, Sang Yun;Nam, Gyeong Rae;Go, Jeong Hwan;Kim, Jae Kyung
    • Journal of Advanced Navigation Technology
    • /
    • v.26 no.5
    • /
    • pp.304-311
    • /
    • 2022
  • Although the SEAD(suppression to enemy air defenses) mission is a strategically important task in modern warfare, the high risk of direct exposure to enemy air defense assets forces to use of unmanned aerial vehicles. this paper proposes a path planning algorithm for SEAD mission for an unmanned aerial vehicle and a method for calculating the mission effectiveness on the planned path. Based on the RRT-based path planning algorithm, a low-altitude ingress/egress flight path that can consider the enemy's short-range air defense threat was generated. The Dubins path-based Intercept path planning technique was used to generate a path that is the shortest path while avoiding the enemy's short-range anti-aircraft threat as much as possible. The ingress/intercept/egress paths were connected in order. In addition, mission effectiveness consisting of fuel consumption, the survival probability, the time required to perform the mission, and the target destruction probability was calculated based on the generated path. The proposed techniques were verified through a scenario.