• 제목/요약/키워드: Rapid prototyping & tooling

검색결과 51건 처리시간 0.022초

복합재료 부품의 RTM 공정을 위한 쾌속금형의 제작 (Rapid Tooling for Resin Transfer Molding of Composites Part)

  • 김선경
    • 소성∙가공
    • /
    • 제15권6호
    • /
    • pp.436-440
    • /
    • 2006
  • A rapid tooling (RT) method fur the resin transfer molding (RTM) have been investigated. We fabricated a curved I-beam to verify the method. After creating a three-dimensional CAD model of the beam we fabricated a prototype of the model using a rapid prototyping (RP) machine. A soft mold was made using the prototype by the conventional silicone mold technique. The procedure and method of mold fabrication is described. The mold was cut into several parts to allow easier placement of the fiber preform. We conducted the resin transfer molding process and manufactured a composite beam with the mold. The preform was built by stacking up eight layers of delicately cut carbon fabrics. The fabrics were properly stitched to maintain the shape while placement. The manufactured composites beam was inspected and found well-impregnated. The fiber volume ratio of the fabricated beam was 16.85%.

쾌속 조형과 쾌속 툴링을 이용한 3차원 제품의 정형 가공에 관한 연구 (Investigation into Net-Shape Manufacturing of Three-Dimensional Parts by using RP and RT)

  • 안동규;이상호;김기돈;양동열;박승교
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2001년도 춘계학술대회 논문집
    • /
    • pp.16-19
    • /
    • 2001
  • Rapid Prototyping (RP) and Rapid Tooling (RT) were introduced to reduce time-to-market and cost by shortening not only the development phase but also the production phase of the manufacturing process. RP generally builds up a prototype layer by layer, rapidly generating a fully three-dimensional free form shape. RT enables the manufacture of production tools. The integration of RP and RT has the potential for rapid net shaping of thee-dimensional parts, which have geometrical complexity. In this study, net shaping techniques for making three-dimensional parts using RP and RT are described and a sample part are shown. A three-dimensional metal part is manufactured by a new RP process, Variable Lamination Manufacturing by using Expandable Polystyrene Foam (VLM-S), and its application to RT for making a clover punch. In addition, we discussed the technology fusion between metal forming md RP/RT.

  • PDF

급속금형제작 (2) : 알루미늄 분말 혼합수지를 이용한 간이형 제작과 그 특성 (Rapid Tooling (2) : Al Powder Filled Resin Tooling and Its Characteristics)

  • 김범수;임용관;배원병;정해도
    • 한국정밀공학회지
    • /
    • 제15권8호
    • /
    • pp.39-45
    • /
    • 1998
  • In the previous study. the powder casting was attempted as the rapid tooling. The powder casting was the process to cast dry powder into the casting mold transferred from R/P model and infiltrate the liquid binder to solidify the powder. And then, the melted copper was infiltrated to control the shrinkage rate of the final mold Conseqently, the shrinkage rate was under 0.1% through that process. The mechanical characteristic was also excellent. Generally, in the slurry casting, the alumina powder and the water soluble phenol were mainly used. However, the mechanical property of the phenol was not good enough to apply to molds directly. In this study, aluminium powder filled with epoxy is applicated to the slurry casting to solve these problems. The mechanical and thermal properties are better than phenol because the epoxy is the thermosetting resin. We achieved a successful result that the shrinkage rate is shortened about 0.047%. Futhermore, the manufacturing time and cost savings are significant. Finally, we assume that the developing possibility of this process is very optimistic.

  • PDF

Improving the Surface Roughness of SL Parts Using a Coating and Grinding Process

  • Ahn, Dae-Keon;Lee, Seok-Hee
    • International Journal of Precision Engineering and Manufacturing
    • /
    • 제8권3호
    • /
    • pp.14-19
    • /
    • 2007
  • Rapid prototyping (RP) technology can fabricate any 3D physical model regardless of geometric complexity using the layered manufacturing (LM) process. Stereolithography (SL) is the best-known example of RP technology. In general, the surface quality of a raw SL-generated part is unsatisfactory for industrial purposes due to the step artefact created by the LM process. Despite of the increased number of applications for SL parts, this side effect limits their uses. In order to improve their surface quality, additional post-machining finishing, such as traditional grinding, is required, but post-machining is time consuming and can reduce the geometric accuracy of a part. Therefore, this study proposes a post-machining technology combining coating and grinding processes to improve the surface quality of SL parts. Paraffin wax and pulp are used as the coating and grinding materials. By grinding the coating wax only up to the boundary of the part, the surface smoothness can be improved without damaging the surface. Finally, moulding and casting experiments were performed to confirm the suitability of the SL parts finished using the proposed process with rapid tooling (RT) techniques.

쾌적조형 부품의 후처리 방안에 관한 연구 (A research on Postprocess Finishing Method of The Rapid Prototyping Parts)

  • 양화준;김성준;장태식;이일엽;이석희
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1997년도 추계학술대회 논문집
    • /
    • pp.83-86
    • /
    • 1997
  • Even as many methods and technologies have been introduced on data generation, parts orientation and layer slicing to acquire the rapid prototyping(RP) parts that have useful surface to satisfy customers' needs such as stylingldesign verification directionlindirect tooling directly from the RP machine, these trials continue to suffer from the surface roughness due to the build characteristics of RP technology. A new postprocess finishing method is suggested in this paper to overcome the surface roughness problem on the surface of the RP parts. To prevent deterioration of dimensional accuracy from the conventional grinding-only, and coating-grinding methods, 4-step surface finishing process is applied. To satisfy the various requirements from the RP oriented industrial f elds, effective procedure, coating material, grmd~ng tools and methods are employed.

  • PDF

금속시제품의 신속제작을 위한 공정기술개발 (Process developments for direct manufacturing of metallic prototypes)

  • 송용억
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1996년도 춘계학술대회 논문집
    • /
    • pp.605-609
    • /
    • 1996
  • In order to ensure that the prototype corresponds as closely as possible to the serial part subsequently to be manufactured, the materials used for the prototye should, wherever possible, be identical to those used in production. In case of metallic parts, however, this demand is still not completely fulfilled by the available Rapid Prototyping techniques. Since only conventional manufacturing processes caan currentlybe used to produce metallic prototypes directly, these are extremely cost and labor intensive. For this reason, work is being undertaken worldwide to develop Selective Laser Sintering (referred to SLS) and Laser Generating for direct manufacture of metallic parts. In this paper the results of both process developments are reported. As the present results show, they have great application potentials in prototyping tools, especially molds and dies.

  • PDF

황동 분말의 용융에 의한 레이저 급속 조형법 (Laser Rapid Prototyping by Melting Brass Powder)

  • 최우천;최우영;송대준;이건상
    • 한국레이저가공학회지
    • /
    • 제3권1호
    • /
    • pp.21-28
    • /
    • 2000
  • Selective Laser Sintering (SLS) can produce three-dimensional objects directly from a CAD solid model without part-specific tooling. In this study, a simple rapid prototyping through selective laser sintering on brass powder is investigated using a Nd-YAG laser. Experiments are conducted to produce single lines on a powder-packed bed for various process parameters. Also, temperature distribution in the powder bed and the thickness of a melted line are predicted by finite element analysis. In the numerical analysis, the thermal conductivity of the brass powder which is obtained as a function of state and temperature is used.

  • PDF

$VLM-_{ST}$ 공정과 삼단역전 쾌속 툴링 공정을 이용한 3차원 제품 정형가공에 관한 연구 (Three-Dimensional Net Shaping Combining $VLM-_{ST}$ and the Triple Reverse Rapid Tooling)

  • 안동규;이상호;양동열
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2003년도 춘계학술대회 논문집
    • /
    • pp.428-432
    • /
    • 2003
  • The technical combination of RP and RT has a potential for rapid manufacturing of three-dimensional parts. In the present work a new RP system, $VLM-_{ST}$, is proposed to manufacture net shapes of 3D prototypes. ㅁ human head shape and a kob shape are manufactured by the $VLM-_{ST}$ apparatus. In addition, a new RT technology, which utilizes a RTV molding technique and a triple reverse process technique, is proposed to manufacture net shapes of 3D plastic parts using prototypes of $VLM-_{ST}$. A plastic part of the knob shape os produced by the proposed RT technology. The combination of the proposed RP and RT enables the manufacturing of a plastic knob within two days.

  • PDF

금속 보강재를 이용한 에폭시 수지형의 특성 향상 및 적용에 관한 연구 (A Study on Characteristics Improvement of Epoxy Resin Mold Using Metal Fillers and Its Application)

  • 정성일;임용관;김경래;정해도
    • 한국정밀공학회지
    • /
    • 제20권4호
    • /
    • pp.165-173
    • /
    • 2003
  • As the cycling time of new products have become more and more short in recent years, the demand for lowering the cost and reducing the production time becomes stronger. In order for the demand, the rapid prototyping and rapid tooling technology have been used. It has been widely known that RP technology has advantages with fabricating 3-D object having a complicated geometric shape. RP products, however, have a limitation with applying to the real die and mold because soft materials such as resin, paper and wax has been mostly used in RP technology. So in this paper, the RP products have been copied to semi-metallic soft tools using the mixture of metal fillers and epoxy resin. In order to evaluate the effect of the fillers on the characteristics of semi-metallic soft tools, three fillers are used including commercial aluminum powder, cast iron powder recycled by machining chips, and aluminum short fiber made by self-excited vibration technique. Besides, in the case of aluminum powder, the change of characteristics of semi-metallic soft tools is also tested according to the volume fraction of the powder.

금속분말 강화수지를 이용한 쾌속금형 제작 (Rapid Tooling by Using Metal Powder Reinforced Resin)

  • 김범수;정해도;배원병
    • 대한기계학회논문집A
    • /
    • 제24권1호
    • /
    • pp.1-6
    • /
    • 2000
  • As dies and molds have become more and more complicated in the recent years, the demand for lower cost and shorter production time is also growing stronger. Rapid prototyping and Tooling technologies are expected to be used for more rapid and lower cost tool fabrication. However the rapid tooling methods have not yet reached the level of application to the manufacturing of metallic dies and molds which require high dimensional accuracy. As the rapid tooling technology, there are the slurry casting, the powder casting, the direct laser sintering, and so on. Generally, in the slurry casting, the alumina powder and the water soluble phenol were mainly used. However, the mechanical properties of the phenol were not good enough to apply to molds directly. In this study, pure epoxy and two types of aluminium powder reinforced resin are applied to the slurry casting. The mechanical and thermal properties are better than phenol because the epoxy is the thermosetting resin. And mechanical characteristics such as shrinkage rate, hardness, surface roughness are measured for the sake of comparison. Metal powder reinforced resin molds are better than the resin tool form the viewpoint of shrinkage rate and hardness. Finally, it has been shown that the application possibility of this process is high, because the manufacturing time and cost savings are significant.